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Chapter 1

Introduction

MariX project has the ambition of join together two different X-rays sources, namely a
Free Electron Laser and an Inverse Compton Scattering source (named BriXs), with the aim
of creating an innovative scientific tool able to go beyond the limits of actual technologies [1].
The possible applications of MariX are very wide and range from the chemistry to biology,
from medicine to solid state physics and cultural heritage research [2][3]. Since very high
light power is required by Compton scattering, laser pulses will be amplified and sent to a
resonant high Finesse Fabry-Perot cavity actively stabilized in order to reach about 500 kW or
more. One of the first steps in R&D program is the realization of prototypes of the stabilized
optical cavity that will be present in BriXs in order to study and characterize its features and
individuate the most important implementation problems. With this objective, we realized a
2D four mirror bow-tie Fabry-Perot cavity and we characterized its most important features.
We also characterized the laser source properties and we implemented a feedback able to
stabilize the cavity-laser coupled system. Active stabilization has been performed exploiting
the so called Pound-Dreve-Hall technique [4]. The study of an actively stabilized system
is interesting not also for BriXs cavity stabilization, but also for its great scientific and
importance. Indeed, active stabilization is applied in field of great interest as for example
frequency comb technology, quantum optics, quantum information and gravitational waves
detection [5][6][7].

The first chapter of this work is an introduction to MariX project and its laser part, the so
called Photonic Machine. In the second chapter a theoretical introduction will be provided in
order to better comprehend the experimental results we reached. The third chapter exposes
the experimental setup realized during this work and its detailed characterization, while
the fourth chapter is focused on the feedback system, its characterization and mathematical
modelization and finally on the stabilization performances experimentally obtained. At the
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end of such chapter, very important considerations on next steps to improve MariX optical
cavity are exposed.



Chapter 2

Introduction to the MariX project

The purpose of this chapter is to present the main aspects of the MariX project with its so
called "Photonic Machine" (the project part concerning lasers and optical cavities) and recall
the theoretical concepts necessary to understand the exposed experimental results.

2.1 The MariX project

MariX is the name of a combined radiation source capable of delivering ultra-high flux,
coherent, femto second X-rays in a wide range of photon energy (300 eV-180 keV), projected
to be installed in the future Scientific Campus of Università degli Studi di Milano, in the now
called Milano Innovation District (MIND). The expected time of development is about 5-6
years [1].

2.1.1 General overview

MariX is designed to be a scientific facility with wide range applications and fields
of interest. In particular, there is a moltitude of research fields involved in MariX project
and the most important are: femto-second time resolves linear spectroscopy, nano-object
imaging at nano-scale resolution, advanced radiological imaging with multi-color X-rays and
innovative radio-terapy techniques based on tunable mono-chromatic hard X-rays. Thanks to
its key-features, MariX can be considered as an unique bridge between different generations
of radiation sources and we can resume the most important features as:

• Combination of two different radiation sources, a Free Electron Laser and Compton-
Back-Scattering and the consequent wide range photon energy spannig from 0.3 keV
to 10 keV (FEL) and from 20 keV to 180 keV (Compton). The two main blocks are
merged toghether to form a unique accelerator ensamble.
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• Operation in continuous wave mode at high repetition rate, from 1 MHz to 100 MHz.

The general layout of MariX and its logo are shown in Figure 2.1. The first radiation source
in MariX is the Free Electron Laser. Despite the great success of Synchrotrons in the last 30
years, the use of a FEL is strategically important to permit experiments intrinsecally forbidden
by storage rings technology. In particular, two parameters of FEL source are important to go
beyond storage rings limits: the brilliance and the coherence of the produced beam. High peak
brilliance is important in time-resolved experiments and in studies that require multi-photon
processes , while coherence permits to control over the phase of scattering photons, removing
some ambiguities typical of normal diffraction experiments. The lasing phenomenon of a
FEL allows to have ultra-short pulses, high coherence and high average flux. FEL pulses are
of the order of 10-100 fs, about three orders of magnitude lower than synchrotron pulses. In
terms of coherence, the FEL performances are 10 to 100 times better than in storage rings
and average flux can also be higher, depending on the repetition rate of the Free Electron
Laser. Time resolved diffraction, spectroscopy and imaging obtained at MariX would provide
new tools in a very wide areas of scientific reserch such as: chemistry, material science,
surface physics, structural biology, quantum materials and more. MariX FEL features could
be exploited expecially for biologically relevant applications (X-ray spectroscopies and X-ray
serial crystallography), thanks to low number of photons for pulse (compared to actual FELs)
and working regime at high repetition rate. The accelerator complex of MariX FEL is a
two-pass recirculated Linac equipped with a bubble-arc compressor able to re-inject the
electron beam leaving the Linac in order to boost it a second time. The bubble-arc compressor
is very important in order to reduce the Linac size, without lowering electron energy.

The second X-rays source is Inverse Compton Scattering between electrons and laser
photons in a Fabry-Perot optical cavity. In MariX this kind of radiation is produced by a
compact machine called BriXS (Bright Compact X-rays Source), that is expected to work
in sinergy with the Free Electron Laser. As written above, monochromatic X-rays have
been proven to be of great interest for medical reaserch, in particular for radiology and
radiotherapy, but transfer innovative technologies to everyday users is often hard due to the
huge cost of Synchrotron-like facilities. From this point of view, is clear that a compact
(laboratory sized) and affordable source, providing a beam with synchrotron-like features,
would open the way to a wide range of clinical application and medical/scientific reasearch.

A compact source with performances comparable with synchrotrons in terms of monochro-
maticity, tunability and intensity does not exist yet and a goal of MariX project is its realiza-
tion with the development of BriXS. The BriXS performances will be comparable to those
of modern synchrotron sources, though its reduced dimensions and costs (from 100x100
m2 to 10x10 m2 in dimension and hundreds of millions euros to tens of millions euros in
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Figure 2.1 MariX layout and logo (picture from [1]).

costs). Such reductions make BriXS aviable for universities, museums, hospitals and other
mid-sized research infrastuctures. BriXS will provide an X-ray beam with average energy
tunable in the range of 20-180 keV, intensities of 1011 −1013 photons with a relative energy
bandwidth ∆E/E = 1− 10% and good transverse coherence. Another unique feature of
BriXS will be the possibility to perform a switch between two colors, then two energies,
without changing the working point of the machine. The broad range of applications of
BriXS includes K-edge subtraction imaging (particularly important for mammographies),
Phase Contrast Imaging, breast cancer rotational radiotherapy, micro-biological studies,
crystallography and museology for cultural heritage investigations.

Research and Development program is divided essentially into two main lines: the
realization of a ICS-ERL demostrator and the detailed study of the laser system. In particular,
the realization of a demostrator is fundamental in order demostrate the theoretical and
computational predictions on BriXS properties and feasibility, because many aspects of the
project are completely new and never experimentally tested (the modified push-pull layout,
as an example). The dedicated test-bench small scale demostrator will be realized at LASA
laboratories with the name BriXSino. The main issues to be addressed by BriXSino are:
to reach the requested electron beam quality preserved with and without Energy Recovery
Linac, to mantain right stability of RF system, to have the possibility of generating 100 MHz
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electron beams,to realize options of two-color ICS generation and to evaluate radio-protection
risks related to the beam recovery. The study of the laser system, will be treated in the next
section both from the technical point of view and for what concernes the related R&D line.

2.1.2 MariX Photonic Machine

With the term Photonic Machine we refer to the MariX optical system, which is designed
to drive both the FEL and the Compton sources. The synchronization of the whole system is
performed using a single laser oscillator, yielding an advantageous intrinsic synchronization
between electron bunches and laser pulses in MariX. In the Inverse Compton Scattering
source, the weak Compton cross section requires high photon intensities (on the order of
magnitude of hundreds of Watts) in order to obtain the designed X-ray photon flux. The
required power can be reached using a pulsed laser instead of a continuous-wave oscillator
and injecting its light beam after a preliminary amplification into an high Finesse Fabry Perot
(FP) cavity, that by superposing incoming pulses achieves a passive gain of 3-4 orders of
magnitude. Moreover, lowering the high repetition rate, it is possible to use the same laser to
generate the electrons for the FEL source.

An Yb-fiber mode-locking laser operating at 100 MHz repetition rate on the carrier
wavelenght 1030 nm has been chosen as laser oscillator for the Photonic Machine. The
outgoing radiation is divided in three output lines that deliver different average powers. The
first line is dedicated to the Inverse Compton Scattering source, with an average power of
100 mW, the about 100 mW second exit is exploited to produce electron bunches at the
RF-guns, while the third output line is used for the Free Electron Laser source. The last
output presents characteristics that are different from the other two, because the repetition rate
is only 1 MHz (This reduction of a factor of 100 is performed by a Mach-Zender amplitude
modulator) and the average power is one order of magnitude higher.

The laser beams coming from the mode-locking oscillator are then amplified in three
similar fiber amplifiers stages. After amplifiers the average power is about 200 W for the
Fabry-Perot Cavity and RF-guns path, while on the FEL line the power reaches 1 W. The
Fabry-Perot cavity consists of four mirror bow-tie cavity stabilized against the laser via
Pound-Drever-Hall technique. Here the power raises allowing the scattering between photons
and electron bunches. In the photoemission process generating electrons for the RF-guns and
the FEL output line, the amplified laser light is converted in the 4th harmonic (so 257.5 nm)
via non-linear processes and both temporal and spatial shaped to reach the optimal condition
of emittance for the electron bunches.

A key-point for the entire functioning are system stability and synchronization. The laser
stabilization network is based on two feedback systems, where the first one stabilizes the laser
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Figure 2.2 MariX Photonic Machine general scheme (picture from [1]).

repetition rate against an external reference while the second system synchronizes the laser
and Compton Fabry-Perot cavity against each other. The general scheme of the Photonic
Machine is shown in Figure 2.2, while in the following sub-sections the most important
components of the MariX Photonic Machine and a summary of the related R&D line will be
treated.

Laser oscillator

The laser oscillator must meet some important requirements to achieve the efficient
coupling needed in the Fabry-Perot cavity. In fact, the laser beam has to be well coupled to
the cavity fundamental mode (T EM00). Another factor to take in account is the necessity of
avoiding self-phase modulation effects in the amplification process that lead to amplitude-
phase coupling which can disturb the coupling with the optical cavity. These elements
establish stringent requirements on the beam spatial profile and degree of polarization,
pointing and pulse to pulse stability and finally the possibility to limitate nonlinear optical
effects in the amplification stage. The chosen laser is a Yb-fiber mode-locking laser aviable
on the market (produced by Menlo company and One Five company). Such laser operates at
100 MHz repetition rate on the carrier wavelenght 1030 nm, with a typical pulse lenght of
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Figure 2.3 Architecture for CPA by means of CVBG and fiber amplification in fibers designed
for MariX. Picture taken from [1].

100-200 fs. It is worth to note that the oscillator needs to be controlled in order to stabilize
both the repetition rate frequency frep and the carrier envelope offset fCEO (for more details,
see section 3.4), because frep is fundamental in sinchronization of the laser against an external
reference, while fCEO has to be removed to overlap laser modes to the FP cavity ones.

Amplification system

The amplifiers will exploit the famous Chirped Pulse Amplification (CPA) method [8]
to drastically reduce nonlinear effects during the amplification process and avoiding optical
fiber damaging due to the excessive power injected. The signal pulse is initially stretched in
time domain up to few hundres of picoseconds, thus reducing its intensity in the waveguide,
where it is amplified, and finally re-compressed. The amplification system is implemented by
the use of commercial available Chirped Volume Bragg Gratings - CVBG (for the CPA) and
a large mode area double clad Yb-doped fiber (for the amplification) disposed in many stages
at increasing power. The whole amplification system has to be designed in order to reach
the best compromise between high output power and low noise, given by non-linear effects
and amplified spontaneous emission, that is a key-point expecially for the beam coupled
with the Fabry-Perot cavity. The amplification conceptual scheme is exposed in Figure 2.3,
while examples of the amplifier fiber systems and CVBGs are shown in Figure 2.4. The
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Figure 2.4 Above: Two implementable high power amplifier fiber system. On the left, Nfern
connectorized coupling system; on the right, NKT’s free-space coupling LMA fiber. Below:
example of a Chirp Volume Bragg Grating. Pictures readapted from [1].

amplification system has to be capable of yielding 200 W at 1030 nm starting from 100 mW.
The first stage can be based on a 15 µm core LMA fiber, 5 m long and characterized by 7
dB/m at 975 nm absorption. The reachable output power is 2 W when pump diodes emit
3.3 W. The second stage permits to reach a power of ≈ 60W using a 40 µm core, 1.8 m long
LMA fiber pumped with 100 W. Non-linear effects are reduced by the use of CVBG mirrors
that stretch the pulse up to 500 ps. In the last stage the 200 W goal is reached by the use of
1 m long 85 µm rod fibers with a 15dB/m absorbance at 975 nm.

Fabry-Perot cavity (ICS line)

The designed Fabry-Perot cavity for the ICS source is a four mirror (two flat and two
curved) a bow-tie cavity in the near confocal configuration. The one that better matches
our technical requirement, also thanks to its mechanical stability and good flexibility in
adjustments of cavity round trip frequency and of the laser beam waist. In order to obtain an
efficient Compton source the aim is maximizing the X-ray flux reaching the best interaction
point overlap between laser and electrons. To obtain this the laser spot at the interaction point
with electrons should be around the 2σ focal spot size of the electrons bunches. Moreover,
the spot size on the mirrors has to be as large as possible in order to reduce thermal effects
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related to the high incident powers [9]. The chose geometric configuration allows to have
largest spots at the mirrors and the smaller waist at the focus at the same time when the cavity
is in a configuration near the stability edge. The 2D planar nature of the cavity introduces an
astigmatism between the horizontal and the vertical axis, then in near-confocal configuration,
the spot is elliptical and not circular1. Obviously, the Finesse of the cavity is a fundamental
parameter in our apparatus, because it is strictly related to the power of the resonant radiation,
according to:

Pcav =
2F
π

Pin

It is evident that the equation above can be satisfied by the combination of large Finesse
and low input power and viceversa and find out the best compromise is a key-point in the
development of the Compton source. Indeed, working with a very high Finesse cavity
involves a very narrow line of cavity modes which on the prectical point of view implies a
very precise stabilization between the laser and the cavity, without which it is impossible to
obtain high power in cavity. On the other hand, a low Finesse lead to the need of amplifier
system able of delivering high power with low phase noise.

Many factors has to be take in account to individuate the best configuration. One of the
most important is surely how cavity with different Finesse reacts to the mode degeneracy
phenomena occurring during the allignement procedure and consequent thermal deformations
of mirrors [10]. In this situation the fundamental mode can be degenerate in frequency with
a higher order mode, causing additional losses in cavity due to the transfer of a part of the
energy to the higher order modes, bigger than the mirror size and unable to resonate. A
Finesse and power lowering then occur, but when the mirror shape is replaced, the cycle
restarts. Here a low Finesse seems to be advantageous, because in an high Finesse cavity the
oscillation are more strong and could not be compensate by the feedback system. On the
other hand, an high power third stage of amplification is not particularly advantageous in
terms of reliability expecially for certain elements like the injector. Currently, the chosen
solution is to adopt an amplifier capable of delivering 65 W and a cavity with an intermediate
Finesse of about 120002.

4th harmonic generation and beam shaping (RF-guns line)

The laser light for the RF-Guns has to be threated before reaching the photocatodes
and generating electron bounches. In particular, both 4th harmonic generation and tempo-

1more details on the used optical cavity will be provided in next Chapters
2This value can be campared with the extreme cases of ThomX experiment [11] and Max Planck Insitute

[9]. The ThomX cavity is extremely high, about 46000, while the cavity used at Max Plank Institute is lower
and it is about 5000
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Figure 2.5 Scheme of the 4th harmonic generation and temporal/spatial shaping from [1].
Firstly the beam encounters the nonlinear crystals that generates the 4th harmonic, then the
beam is manipulated in order to change its temporal and spatial shape.

ral/spatial shaping have to be performed, as schematized in Figure 2.5. The first stage after
amplification is the 4th harmonic generation to obtain suitable photons for the photoemission.
This task is experimentally performed using non-linear crystals like Lithium triborate and
CLBO. The 4th harmonic at 257.5 nm is generated in two different stages: in the first one
Lithium triborate is used to generate the 2nd harmonic from the output of amplifiers, while in
the second stage a CLBO crystal generate the 4th harmonic starting from the 2nd . In general,
harmonic conversion processes can occur when a laser light goes through a non-linear crystal
while the so called phase-matching condition is satisfied. Both the LBO and the CLBO
are nonlinear and birefringent crystals, with uniaxial symmetry that can be exploited to
satisfy the phase-matching. In LBO, the extraordinary refraction index is strongly dependent
on the crystal temperature, allowing the noncritical phase-matching condition at a certain
temperature. In this case, the generated photons travel parallel to the incoming beam. A
critical phase-matching can be instead obtained using a CLBO crystal, choosing the right
incidence angle of the beam. In this configuration the incoming beam and the higher order
harmonic are affected by walkoff, that must be compensate by an analogue crystal rotating in
the opposite direction.

The 4th harmonic photons then undergo an intensity profile shaping both in temporal and
spatial domain, exploiting birefringent crystals for the temporal shaping and the so called
π-Shaper for the spatial shaping. Temporal shaping based on birefringent crystals presents
some important advantages in terms of stability and simplicity respect to conventional delay
lines. For a linearly polarized laser beam incident on the birefringent crystal travelling on
the z axis, if the refractive index of such crystal are different for the x and y axes, the two
filed components will move at different group velocities, presenting a temporal separation
of td =

∣∣ng,o L−ng,e L
∣∣/c. Further replicas are generable adding a crystal of L/2 lenght at

the end of the first. Then, using n crystals it is possible to generate 2n replicas that can be
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summed together to obtain one rectangular-shaped pulse as represented in Figure 2.6a. As
written above, spatial shaping is performed by a π-Shaper. This kind of device involves
aspherical lenses that rearrange the Gaussian intesity profile of the incoming laser pulse, in
order to obtain a rectangular intensity distribution (Figure 2.6b). Such rectangular profile is
finally reproduced on the photocatode by lens system.

Amplitude modulator (FEL line)

As previously written, the laser pulse is used to generate electrons for the Free Electron
Laser, but with a repetition rate of 1 MHz, 100 lower than the laser one. In order to reduce
the repetition rate, it is possible to use a Mach-Zender amplitude modulator (which is shown
in Figure 2.7). This kind of amplitude modulator exploits induced modifications of the
refraction index of the laser pulse path material. Using two different arms and three different
electrodes (used to control the electric field inside the arms material) it is possible to create
a phase difference between the pulses passing through the arms, leading to an interference
phenomenon. With a properly choice of the introduced phase delay, it is possible to induce
destructive interference and control the output power. Repetition rate reduction is obtained if
only one pulse in a hundred can leave the modulator.

Photonic Machine R&D program

R&D program on the "Photonic Machine" has been started in dott.Cialdi’s laboratory at
Physics Department and aims to define and test all the main components of the laser system
and to make the completion of the BriXSino demostrator possible. The three main parts of the
laser system on which the R&D activities will be performed are: the Fabry-Perot cavity, the
amplifier and the lines for the RF-guns. At the moment, an Orange Yb fiber-doped oscillator
by Menlo is in use, with a repetition rate of 100 MHz and 200 mW of amplification stage.
The Fabry Perot cavity in use is a bow-tie type with 4 mirrors (two flat and two concaves,
with a radius of curvature of 750 nm) such as the one provided for MariX. The development
of this system is of fundamental importance for many aspects such the development of the
stabilization system, the definition of the final geometry with respect to the angles of impact
and also to develop the alignment and measurement techniques of the spot size in the focus
point and on the mirrors of the cavity. As already written in the introduction of this work,
this thesis has been developed in this framework.
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Figure 2.7 Example of Mach-Zender amplitude modulator. Picture from [1].





Chapter 3

Theoretical concepts: active optical
stabilization

A good matching between the Fabry-Perot cavity and the laser source can be reached
only with an appropriate optical stabilization on the system. In order to understand the theory
behind this key-topic, the useful concept of Power Spectral Density will be firstly introduced.
After this, we will introduce the basic concepts of mode-locking lasers and optical cavities.
Then we will deal with the modeling of a stabilization system like the one used during this
thesis work, introducing the theory necessary to understand and describe each of its parts.

3.1 Power Spectral Density and noise

An introduction about Power Spectral Density and its application in quantifying noise in
a physical system is necessary to better understand the work done in this thesis. In particular,
we are interested in the noise of the cavity-laser system that we have to stabilize using the
external reference laser. In order to define what is a noise in a signal, we first introduce a
generic ideal time-dependent sine wave signal [12]:

videal (t) =V0cos(2πν0 t +φ0) (3.1)

Where V0 is the amplitude, ν0 is the frequency and φ0 is a constant phase in radians. In a
system where some noise is present, the signal has to be re-written as

vnoisy (t) = [V0 + ε (t)]cos [2πν0t +φ (t)] (3.2)
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Two new terms have been introduced: amplitude noise ε (t) and phase noise φ (t). Amplitude
noise is such that ε (t) = 0 and |ε (t)| ≪ |V0|, while phase noise is such that φ (t) = 0 and
|φ (t)| ≪ 2πν0. We can then introduce the concept of istantaneous frequency from the cosine
argument in vnoisy (t) formula.

ν (t) =
1

2π

d
dt

[2πν0t +φ (t)] = ν0 +
1

2π

dφ (t)
dt

(3.3)

Frequency noise of a signal refers to random fluctuations of the istantaneous frequency [13].
We can hence define frequency fluctuations from Equation 3.3, subtracting ν0 from ν (t) and
obtaining

∆ν (t) = ν (t)−ν0 =
1

2π

dφ (t)
dt

(3.4)

As for amplitude and phase noise, ∆ν (t) = 0 and we can also see that frequency noise is
related to phase noise simply by a temporal derivative (and by a moltiplicative constant). A
concept strictly related to noise is the Power Spectral Density, because PDS describes how
the power of a noisy signal is distributed over the frequencies. In order to find out about its
mathematical definition, we can take a generic signal x, which is variable in time. Then we
have x = x(t) and its Fourier transform over the time interval [0,T ] is defined as

x( f ) =
2
T

∫ T/2

−T/2
x(t)e−i2π f t dt

Such definition has been choosen in order to to be coherent with the FFT function calculated
by the oscilloscope we used in our experimental setup. This Fourier transform definition
can be also advantageous because so calculated values are independent from the selected
integration time T. The Power Spectral Density of x = x(t) is defined as the squared modulus
of its continuous Fourier transform, but the straightforward approach does not work in case
of fluctuation around a long term mean value. For this reason, another definition can be used:

S ( f ) = lim
T→∞

T
2
|x( f )|2 (3.5)

Here the integral in the continuous Fourier transform is restricted to a finite time interval, in
order to avoid problems of convergence. Then, the limit permits to calculate the value for
large time intervals.

Another definition takes as a starting point the Wiener-Khinchin theorem and this is
convenient in certain situations. The Wiener-Khinchin theorem (or Wiener–Khintchin
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theorem) links the Power Spectral Density to the autocorrelation function of x(t):

S ( f ) =
∫

∞

∞

R(τ)e−i2π f τ dτ

The autocorrelation function of x(t) is generally defined as R(τ) = ⟨x(t)x(t + τ)⟩, where
⟨·⟩ indicates the ensemble average.

It is worth to note that for stationary and ergodic systems the ensemble average is equal
to time average, so when τ = 0 this second definition of Power Spectral Density equals to
the first written above. Moreover, when a PSD is taken in account, it is important to check
if the one sided definition or the two sided definition has been choosen. In one sided PSD
only positive frequencies are taken in account but with double contribution, like in Equation
3.5, while in two sided PSD negative frequencies occur in the calculation. The presence of a
factor 2 can help in the distintion, sometimes hard.

The variance of x in a certain range of noise frequencies is given as an integral over the
one sided PSD:

σ
2
x |[ f1, f2] =

∫ f2

f1
Sx ( f ) d f

Using Power Spectral Density we can quantify the noise in our experimental setup. In
the coupled cavity-laser system, frequency fluctuations can lead to loss of resonance. For
this reason, frequency noise suppression is a key-point of our work (stabilization method
will be widely explained in next sections and chapters). Fluctuations in frequency can be
caused essentially by machanical vibrations that change the cavity lenght and laser frequency
instabilities. One sided Power Spectral Density of frequency noise is

Sν ( f ) = lim
T→∞

2
T

〈∣∣∣∣∫ T/2

−T/2
∆ν (t)e−i2π f t dt

∣∣∣∣2
〉

that is measured in Hz2/Hz [12]. The variance of frequency noise due to the frequency range
[ f1, f2] is easily obtained as

σ
2
ν |[ f1, f2] =

∫ f2

f1
Sx ( f ) d f

Frequency Noise PSD is linked to the Phase Noise PSD by

Sν ( f ) =
|i2π f |2

(2π)2 Sφ ( f ) = f 2Sφ ( f )

then
Sφ ( f ) =

1
f 2 Sν ( f )
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that trivially follows from the relation bethween φ (t) and ν (t) in instanteous frequency
formula. Phase Noise PSD is measurend in

[
rad2/Hz

]
Deviation from maximum power in cavity could be caused either by frequency fluctua-

tions over the resonance frequency or by change in laser intensity, that is why the concept of
Relative Intensity Noise will be briefly treated. Intensity noise describes fluctuations in the
laser output power[14] and it is usually quantified using the so called RIN, Relative Intensity
Noise. Such kind of noise is due to many factors that depend, for example, on the typology
of laser used. The RIN can be obtained starting from the autocorrelation function CPP (τ) of
power fluctuations δP around the average laser power < P >.

CPP (τ) =< δP(t)δP(t + τ)> / < P >2

The Fourier Transform of CPP (τ) is the RIN.

RIN (ω) =
∫

∞

−∞

CPP (τ)exp(iωτ) dτ

RIN is usually dBc/Hz (where dBc are dB below carrier). At last, it is important noting
that intensity and frequency can be related by non-linear phenomenons like Self-Phase-
Modulation that make noise stabilization harder so it is important avoiding such effect
expecially in amplification stages.

3.2 General scheme of the feedback

The feedback system used to perform active stabilization in this thesis work can be
schematized as in Figure 3.1 and consists of the following parts:

• a Reference, in this case the optical frequency νr of the mode-locking laser;

• a Source that we want to lock to the Reference and which in our case is the frequency
of the Fabry Perot cavity νs;

• a Discriminator, which reads the frequency difference ∆ν = νr − νs between the
Reference and the Source, generating an error signal VD according to it;

• a Servo, which elaborates the Discriminator signal and send an output signal in turn to
the last stage;

• an Actuator, which reads the Servo signal and applies to the Source changing the
frequency νs of δν .
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Discriminator

ServoActuator

Source Reference

VD = ∆ν D

VH =VD H

δν =VH A

νs = ν0 +δν νr

Figure 3.1 Conceptual scheme of the feedback used for the stabilization of the system.
Here D, H and A are the complex transfer functions of discriminator, servo and actuator
respectively and ∆ν = νr −νs.

Discriminator, servo and actuator are representable by three complex transfer functions D( f ),
H ( f ) and A( f ), depending on the frequencies f at which ∆ν fluctuates due to noise. D links
the input and the output of the discriminator, H of the servo and A of the actuator. When we
consider the closed loop as shown in the scheme, then we have a global transfer function
G( f ) given by the product of the three single contribution

G( f ) = D( f ) H ( f ) A( f ) (3.6)

Because G( f ) si a complex function (product of complex functions), both amplitude and
phase are to take in account.

The output signal of feedback element can be written as folllows. The discriminator
produces a voltage signal according to ∆ν = νr −νs, thus

VD ( f ) = [νr ( f )−νs ( f )] D( f )

The servo elaborates the error signal, then we obtain

VH ( f ) =VD ( f ) H ( f )

The last block is the actuator that reads the output of the servo and corrects the source. In
particular it adds the following quantity to the source frequency

δν ( f ) =VH ( f ) A( f )



20 Theoretical concepts: active optical stabilization

After servo operates on the source

νs ( f ) = ν0 ( f )+δν ( f ) = ν0 ( f )+VH ( f ) A( f )

where ν0 is the initial optical frequency of the source. Closing the loop we have

νs ( f ) = ν0 ( f )+∆ν ( f ) D( f ) H ( f ) A( f ) = ν0 ( f )+∆ν ( f ) G( f )

Using equations written above it is simple obtain that

νs ( f ) =
1

1+G( f )
ν0 ( f )+

G( f )
1+G( f )

νr ( f ) (3.7)

If G( f ) is real and G( f ) → ∞∀ f , we have νs ( f ) = νr ( f ), which means that the cavity
follows the reference frequency fluctuations: they are perfectly locked.

We can then calculate the Power spectral density of the frequency noise, assuming that the
fluctuations of the cavity frequency ν0 ( f ) and the reference frequency νr ( f ) are uncorrelated
and so leading to a great simplification, because mixed terms referred to ν0 and νr cancel,
then

Ss ( f ) =
1

|1+G( f )|2
S0 ( f )+

|G( f )|2

|1+G( f )|2
Sr ( f ) (3.8)

The perfect locking is reached when because of |G( f )| → ∞ we obtain Ss ( f ) = Sr ( f ),. It
is clear thet the most important term is not the source frequency νs ( f ), but the difference
between reference and source frequencies ∆ν ( f ) = νr ( f )−νs ( f ): as our aim is to lock the
source and the reference, ∆ν has to ideally vanish. We can write the expression of ∆ν ( f )
Power Spectral Density starting from

|∆ν ( f )|2 = |νr ( f )−νs ( f )|2 =
= |νr ( f )|2 + |νs ( f )|2 −2Re

[
νs ( f ) νr ( f )∗

]
=

= |νr ( f )|2 +
∣∣∣∣ 1
1+G( f )

ν0 ( f )+
G( f )

1+G( f )
νr ( f )

∣∣∣∣2+
−2Re

[(
1

1+G( f )
ν0 ( f )+

G( f )
1+G( f )

νr ( f )
)

ν
∗
r ( f )

]
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Deletin mixed terms, we finally have

S∆ν ( f ) = Sr ( f )+
1

|1+G( f )|2
S0 ( f )+

|G( f )|2

|1+G( f )|2
Sr ( f )−2Re

[
G( f )

1+G( f )
Sr ( f )

]
=

=
1

|1+G( f )|2
S0 ( f )+

∣∣∣∣1− G( f )
1+G( f )

∣∣∣∣2 Sr ( f ) =

=
1

|1+G( f )|2
S0 ( f )+

1

|1+G( f )|2
Sr ( f )

so
S∆ν ( f ) =

S0 ( f )+Sr ( f )

|1+G( f )|2
(3.9)

S0 ( f ) and Sr ( f ) have non-negligible values for many frequencies, because of noise in the
Fabry-Perot cavity and the laser (for example mechanical vibrations or air turbolences) that
is directly transferred to ∆ν . Such noise can be suppressed (as shown in the last equation)
maximizing |1+G( f )|2. It is important notice that the phase of G( f ) takes a fundamental
role, especially when |G( f )| ≈ 1.

3.2.1 Barkhausen stability criterion

Spontaneous oscillations of a system are typically damped by dissipative phenomena
and do not propagate. However, when the so called Barkhausen criterion is satisfied [15]
self-oscillations could occur in a system with feedback and can disturb the correct operation
of the system. The Barkhausen criterion can be easily understood taking a simple system
with two blocks represented by complex transfer functions A( f ) and B( f ) and connected in
a loop as shown in Figure 3.2 and with a negative feedback (discussion for positive feedback
is trivial), we have a global transfer function [15]

T ( f ) =
A( f )

1+A( f ) B( f )

Oscillation results when the feedback system is not able to find a stable state because its
transfer function cannot be satisfied, namely when 1+G( f ) = 0 with G( f ) = A( f ) B( f ),
that is |G( f )|= 1 and at the same time the phase of G( f ) equals π +2kπ . When a negative
feedback system is in such condition, it is satisfying the Barkhausen criterion (it occurs for
positive feedback if the phase is null). Spontaneous oscillation frequency fosc is the frequency
at which the Barkhausen criterion is satisfied. Since the exact theoretical Barkhausen criterion
is hard to satisfy in a real apparatus, we have to consider the experimental conditions in
which self-oscillations could occur without having exactly |G( f )|= 1 and phase φ ( f ) = π .
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A

B

Figure 3.2 A simple scheme of a system with feedback.

Such experimental condition corresponds to having a slope of |G( f )| greater in modulus
than 20dB per decade1 when |G( f )| = 1 and an high phase slope dφ

d f when the phase is
closer than 45 degrees from 180◦ [16]. In fact, if the value of phase or amplitude is near its
critical value, but the other quantity varies quickly (then they span a wide range of phase
and amplitude values around π and 1 respectively), we have high possibiliies to matching an
instability point. This suggests for example that we will have to use single pole filters in the
system, because their slope is −20dB per decade and their phase slope is enough low.

3.2.2 Pound-Drever-Hall technique

The frequency locking of a Fabry-Perot optical cavity to an external laser reference can
be performed using the so called Pound-Drever-Hall technique [4]. The idea behind this
method is simple: it is possible to create an error signal that allows to discriminate if the
cavity has to be lengthned or shortened in order to be in resonance with the external laser,
decoupling frequency instabilities from laser intensity fluctuation.The error signal in PDH
technique is obtained starting from the reflected beam of the cavity. The reflection coefficient
for a symmetric cavity can be written as [17][4]

F (ω) =
Ereflected

Einput
=

(1−∆) r
(

e−i ω−ω0
FSR −1

)
1− (1−∆) r2 e−i ω−ω0

FSR

(3.10)

where ∆ represents the internal losses of the cavity for the single round-trip, r is the amplitude
reflection coefficient of each mirror, ω0 is the resonance frequency so that δω = ω −ω0 is
the detuning between the cavity and the external source and FSR is its free spectral range.
The beam that reflects from Fabry-Perot cavity consists of a coherent sum of two different
beams: the promptly reflected beam which is directly reflected by the first mirror and does not
enter in the cavity and the leakage beam which is the small part of radiation inside the cavity

1Note that the slope is negative, since the phase is π .
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Figure 3.3 Example of intensity and phase of the cavity reflectivity F ( f ) in function of the
detuning between input beam and cavity resonance frequency.

that escapes from the first mirror. Their relative phase depends on the detuning bethween
the laser and the cavity. When the cavity is perfectly resonant with the laser the promptly
reflected beam and the leakage beam are 180°, so they interfer distructively. If the cavity is
not perfectly resonant, the phase difference is less than 180° so the reflected signal is higher
than in the perfect resonance condition.The intensity |F (ω) |2 and the phase φ (ω) are shown
in Figure 3.3. As we already noted is fundamental that the error signal needed to stabilize the
cavity must be able to discriminate whether the resonance frequency is too high or too low.
Thus, we cannot use the intensity signal, because it is an even function around the resonance
δω = 0 and it is impossible to determine in which direction the cavity frequency has to
be moved. However, the phase function is odd around the resonance, and it could be used
as error signal. Unfortunately we do not have direct access to it, because the light signals
detection is performed via photodiodes, which read intensity signal only. PDH technique
permits to bypass this problem, permitting to sample the phase signal of the reflected beam
indirectly. A phase modulator, typically a non linear crystal, is placed before the cavity and
fed with a sinusoidal voltage, which creates an electric field according to it, as shown in
Figure 3.4. This field changes the refraction index of the crystal as

n(t) = ne −
1
2

n3
e r33 E (3.11)

where ne is the extraordinary index of refraction of the crystal, r33 is the element (3,3) of the
electro-optical tensor of the crystal and E is the electric field applied in ne direction. If we
generate a sinusoidal electric field by applying a voltage V (t) =V0 sinΩt so that E = V (t)

d
with d thickness of the crystal, then Equation 3.11 allows us to write the field out of the
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Figure 3.4 Scheme of the non linear crystal used as a phase modulator. The electrodes apply
a high sinusoidal voltage on one of the extraordinary axis of the crystal ne and generate the
sidebands.

crystal as

E (t) = A exp(−iω t + i k z) =

= A exp
(
−iω t + i

2π

λ
n(t) z

)
=

= A exp
(
−iω t + iω

z
c

(
ne −

1
2

n3
e r33

V0

d
sinΩt

))
=

= A exp(−iω t) exp
(

iω
z
c

ne

)
exp
(
−i

ωz
2c

n3
e r33

V0

d
sinΩt

)
It is clear that we have three incident waves, the carrier and two sidebands of frequency
ω , ω +Ω and ω −Ω respectively. If we define β = 1

2
ω z
c n3

e
V0
d r33 =

π z
λ

n3
e

V0
d r33 and E0 =

A exp
(
iω

z
c ne
)
, we can write

E (t) = E0 exp(iω t) exp(iβ sinΩ t)

We can expand this expression, using Bessel functions, to

E (t)≈E0 [J0 (β )+2iJ1 (β )sinΩt] exp(−iω t)=E0

[
J0 (β ) eiω t + J1 (β ) ei(ω+Ω)t − J1 (β ) ei(ω−Ω)t

]
If P0 ≡ |E0|2 is the total power in the incident beam, then the power of the carrier is Pc =

J2
0 (β )P0, while the power of each first-order sideband is Ps = J2

1 (β )P0. Note that when
modulation is small, so when β < 1, we can neglet the power of all higher-order sidebands
and write P0 ≈ Pc +2Ps. Now we have to consider the reflected beam, so we multiply the
electric field by the function defined in Equation 3.10. We obtain

Eref = E0

[
F (ω) J0 (β ) eiω t +F (ω +Ω) J1 (β ) ei(ω+Ω)t −F (ω −Ω) J1 (β ) ei(ω−Ω)t

]
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As previously explained, photodiodes can measure intensity only. The power of the reflected
beam is given by Pref ≡ |Eref|2. Thus after some algebraic manipulations, the power reflected
by the cavity can be written as2

Pref =Pc |F (ω)|2 +Ps

(
|F (ω +Ω)|2 + |F (ω −Ω)|2

)
+

+2
√

PcPs Re [F (ω) F∗ (ω +Ω)−F∗ (ω) F (ω −Ω)] cosΩt+

+2
√

PcPs Im [F (ω) F∗ (ω +Ω)−F∗ (ω) F (ω −Ω)] sinΩt +(2Ω terms)

(3.12)

We are interested in oscillating terms, because they sample the phase of reflected field. There
are two oscillating terms in the previous equation: a cosine and a sine. We put ourselves in
the case of modulation frequency Ω greater than the line width δω of the cavity3. In this
situation only the sine term is considered, because F (ω) F∗ (ω +Ω)−F∗ (ω) F (ω −Ω) is
purely immaginary. This result is evident considering that for fast modulation the carrier is
perfectly resonant with the cavity, while the sidebands are not. In particular they are totally
reflected, so we can make the approximation F (ω ±Ω)→−1, which brings to [4]

F (ω) F∗ (ω +Ω)−F∗ (ω) F (ω −Ω)∼−2i Im [F (ω)]

As we have already written, this quantity is purely imaginary, thus the cosΩt term in
Equation 3.12 vanishes. Typically the power of the carrier is much greater than the power of
the sidebands (up to 102, since β ≈ 0.1), so Pc ≫ Ps and we can neglect the term proportional
to Ps. Equation 3.12 becomes

Pref ≈ Pc |F (ω)|2 −4
√

PcPs Im [F (ω)] sinΩt +(2Ω terms) (3.13)

The photodiode converts this power into a voltage signal, which is then amplified. Amplifiers
usually cut the DC component, so it is possible to neglect the first term in Equation 3.13.
Notice that the information about the cavity position contained in Preflected is at the frequency
Ω contained in the sine term. In order to directly access the quantity Im [F (ω)],we have to
demodulate the signal with the frequency Ω by a mixer, which multiplies the signal itself
by a modulation sinΩt. From simple trigonometric considerations it can be shown that the
information at frequency Ω has been moved to zero frequency and 2Ω frequency. Typically
a low-pass filter is inserted so that double frequency terms can be neglected, bringing to the

2Notice that we expressed every quantity in function of ω and Ω, which are pulsations, while experimentally
one deals with pure frequencies f and ν . Thus, for the applications it will be necessary to make the substitutions
ω = 2π f and Ω = 2π ν .

3δω is defined as the Full Width at Half Maximum (FWHM) of the amplitude of the cavity reflection
function.
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Figure 3.5 Typical PDH error signal in the case of fast modulation (figure from [4]).

Pound-Drever-Hall error signal

εPDH ≈−
√

PcPs Im [F (ω) F∗ (ω +Ω)−F∗ (ω) F (ω −Ω)] cosφ (3.14)

where φ is the phase shift between mixed signals and it is usually set to zero. εPDH is used to
drive the cavity and its shape in fast modulation case is shown in Figure 3.5.

3.3 Source: optical cavities

The source in the feedback system is a Fabry-Perot four mirror bow-tie optical cavity in
which two mirrors are flat and two are curved. An optical cavity is an object formed by two or
more mirrors which accumulates electromagnetic radiation inside. There the electromagnetic
field can have only some determined shapes imposed by the boundary conditions and in
particular stationary waves at certain frequencies will be formed [14]. These stationary
waves are called modes and they are characterized by three indexes: one longitudinal and
two transverse. In general, the modes of any cavity can be obtained from the Huygens-
Fresnel equation for the electromagnetic field with a fixed cavity geometry [14] in paraxial
approximation. By imposing that after one round-trip the field reproduces its shape, so that
E(x,y,2L) = σ exp(−i k 2L)E(x,y,0) where σ is a complex eigenvalue. It is worth noting
that the field of the modes reproduces itself after a round trip, so they can be considered as
eigenstates of the cavity with eigenvalue σ : a resonator takes the incoming field and projects
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it on its eigenstates [14]. When cilindrical symmetry is broken the eigenfunctions are the
Hermite-Gaussian modes:

Enpq (x,y,z) =E0
w0

w(z)
Hp

(√
2

x
w(z)

)
exp

(
− x2

w(z)2

)
Hq

(√
2

y
w(z)

)
exp

(
− y2

w(z)2

)

exp

[
−i

(
knpqz− (1+ p+q)arctan

z
zR

+
k
(
x2 + y2)
2R(z)

)]
(3.15)

With HN Hermite polinomial with index N, while w(z) and R(z) follow the trend imposed
in a Gaussian Beam. Each mode has a defined frequency, given by

νnpq = FSR
(

n+
1+ p+q

2π
arccosm

)
(3.16)

where p and q are the transverse mode indexes, n is the longitudinal mode index and m is the
so called stability parameter, which depends on the geometry of the cavity and it is related
to the coefficients of the round trip matrix MRT. Moreover, a cavity is considered stable
if its stability parameter satisfies |m|< 1 [14]. It is worth noting that the 2D nature of the
cavity produces different beam diameters in the vertical and horizontal axis. Such asymmetry
alterates the mode structure, then mode frequencies become [14][10]:

νnpq = FSR
(

n+
1/2+ p

2π
arccosmH +

1/2+q
2π

arccosmV

)
(3.17)

where mV and mH are the stability parameters of the vertical axis and horizontal axis
respectively. The Hermite-Gaussian mode structure is shown in Figure3.6

As written above, MariX cavity is a four mirror Fabry-Perot resonator. The incoming
laser beam is reflected many times inside the cavity generating one partial wave at each round
trip. If the round trip optical path is an integer multiple of the incident laser wavelenght, the
waves inside the cavity interfere costructively creating a strong field. Treating the four mirror
FP resonator as an interferometer (as in scheme presented in Figure 3.7), the transmitted
beam can be used to obtain informations about the radiation inside the cavity. The power
transmission coefficient after the second cavity mirror at normal incidence is

TB =
(1−R1)(1−R2)[

1−
√

RTOT e−i2π
δν

FSR

]2 (3.18)
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Figure 3.6 Low-order Hermite-Gaussian modes intensity profile theoretically calculated
using Wolfram Mathematica software.

mirror A mirror B

mirror C mirror D

Figure 3.7 Four mirror Fabry-Perot cavity scheme: the first mirror is labeled A, the second is
labeled B, the third is C, while the last one is named D.
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Where RA and RB are the reflectivity of the first and output mirrors respectively, while
RTOT = RA ·RB ·RC ·RD is the product of the reflectivities of all the mirrors constituting the
cavity, FSR indicates the Free Spectral Range of the optical cavity and δν is the frequency
difference between the cavity resonance frequency and the light wave frequency. We can
also write the transmission coefficients for the third and fourth mirror:

TC =
(1−RA)(1−RC) RB[
1−

√
RTOT e−i2π

δν

FSR

]2 (3.19)

TD =
(1−RA)(1−RD) RB RC[

1−
√

RTOT e−i2π
δν

FSR

]2 (3.20)

Considering now the second mirror case only, when the coupling between the cavity and the
laser is perfect (then when resonance frequency of the cavity is the same of the incoming
wave), Equation 3.18 becomes

TB =
(1−RA)(1−RB)[

1−
√

RTOT
]2 (3.21)

We can then obtain the width of the transmission peak starting as

∆νFP = FSR
1− (RTOT)

1/2

π (RTOT)
1/4 (3.22)

Equation 3.22 allows us to define a very important characteristic of a FP cavity: its
Finesse:

F ≡ FSR
∆νFP

=
π (RTOT)

1/4

1− (RTOT)
1/2 (3.23)

Note that the Finesse depends only on the product of the four reflectivity coefficient RTOT.
The Finesse of a cavity is strictly related to the power gain Gpower

G =
F
a

(3.24)

where a is a coefficient dependent on the cavity mirrors properties. The undercoupled
configuration allows the lowest a, then the highest gain. In particular, for an undercoupled
Fabry-Perot cavity we have

G =
F

π/2
(3.25)
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The power gain is a fundamental quantity in MariX application, because it permits to obtain
high power inside the cavity and then the desired X-ray flux produced by the electron-photon
scattering.

We can also study important properties like the beam radius for a certain position or the
waist at focus size and shape. As an example, it is possible to write the spot dimension at the
optical coordinate z for each axis as

w(z) =
FWHM (z)√

2 ln2
(3.26)

where FWHM (z) indicates the full with half maximum size of the intensity profile at the
same coordinate z. Cavity geometry determinates waist minimum size and spot dimension
on mirrors and for the MariX cavity the better situation occurs near the edge of stability
region, in near-confocal configuration. Indeed, in near-confocal configuration wais dimension
is minimized, while spot size on mirrors is maximized (reducing thermal deformation of
mirrors). Practically, the near-confocal configuration can be achieved approaching the 2
curved mirrors and restoring the lenght modifying the distance between the two flat mirrors.

3.4 Reference: mode locking laser

The reference in our feedback system is an infrared mode-locking pulsed laser and, as
already explained, the optical cavity is locked to it. In order to reach a better comprehension
of the physical system we have studied, a short exposition of mode locking lasers principles
is here provided. In general lasers can operate in continuous wave regime or in pulsed regime.
Some applications, like Compton Back-Scattering with electrons, as an example, cannot
be performed by continuous wave laser because they need high powers or short optical
pulses. Transient laser behavior allows one to obtain higher peak powers by concentrating the
aviable energy in a single short optical pulse or in a periodic sequence of optical pulses. From
dynamical point of view, pulsed laser behavior can be divided into two distinct categories[18]:

• Laser transient occuring on time scale of the order of the cavity photon lifetime, namely
appreciabilily larger than the cavity round trip time. This includes gain-switching
regime and Q-switching regime, which enable the generation of optical pulses as short
as few nanoseconds.

• Laser transient occurring on time appreciabily shorter than the cavity round trip time.
These are basically multi-longitudinal-mode regimes and include mode-locking regime,
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which permits the generation of trains of ultrashort laser pulses with duration down to
few femtoseconds.

As written above, a mode-locking laser is used in our experimental setup and a description in
frequency domain is here reported [14].

Let us now consider a laser oscillating on a large number of longitudinal modes. Under
normal circumstances, the beam intensity of continuous wave oscillation will show a random
time behavior, due to the random value of the phase associated to the each mode. The square
of the electric field amplitude, defined as |A(t)|2 of the ouput beam in the case of many
oscillating modes of the same amplitude spaced in frequency by a frequency difference of
∆ν between consecutive modes shows the mentioned time random behavior, as can be see in
Figure3.8-a. Despite the randomness, the pulse waveform is formed by a superposition of N
frequency, so it has some general properties of Fourier series. In particular, the waveform
is periodic with a period τp = 1/∆ν and light pulse of the random waveform presents a
duration of ∆τp approximately equal to the inverse the total oscillating bandwidth, written
in formula ∆τp ≈ 1/∆νL where ∆νL = N∆ν . We can observe that for lasers with relatively
large gain bandwidths, ∆νL might be comparable to it and hence pulses of very short duration
(picoseconds or less) can be produced.

If we then suppose that the oscillaing modes, while still having equal or comparable
amplitudes, are made to oscillate with a definite relation of phase: the laser is referred to be
mode locked. Many methods are used to obtain mode-locking and we will mention the most
important later.

The simplest case is the one in which N = 2n+1 longitudinal modes oscillate with the
same amplitude E0 and the phases ϕl locked according to a linear relation ϕl −ϕl−1 = ϕ

where ϕ is a constant. The total electric field E (t) at any point of the output beam is given by

E (t) =
+n

∑
l=−n

E0 exp [i ((ω0 + l ∆ω) t + l ϕ)] (3.27)

where ω0 is the pulsation of the central mode and ∆ω is the frequency difference between
consecutive modes. Total electric field can be rewritten as

E (t) = A(t) exp iω0 t (3.28)

where

A(t) =
+n

∑
l=−n

E0 exp [i l (∆ω t +ϕ)] (3.29)
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Figure 3.8 a) Electric field of many modes random distributed in time. b) Electic field pulsed
obtained locking phases together (figure from [14]).

So E (t) is representable in terms of a sinusoidal carrier wave whose amplitude A(t) is time
dependent. A variable change can be performed in order to calculate the time behavior of
A(t): we now choose a new time reference t ′ such that ∆ωt′= ∆ωt +ϕ . In terms of t′, A(t)
becomes

A(t) =
+n

∑
l=−n

E0 exp [i l (∆ω t′)] (3.30)

It is easy to recognize a geometric progression with ratio exp(i∆ω t′) that can be developed
as

A(t′) = E0
sin [(2n+1)∆ω t ′/2]

sin [∆ω t′/2]
(3.31)

The quantity A2 (t′)/E2
0 is shown in Figure3.8-b. It is clear that as a result of the phase-

locking condition, the oscillating modes interfere so as to produce a train of evenly spaced
pulses. Maximums occur when t′= 0 and when the condition (2π ∆ν t′/2) = π is satisfied,
then two successive pulses are separed by a time

τp = 1/∆ν (3.32)
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Figure 3.9 a) Frequency comb with equal field amplitude for each mode. b) Gaussian shaped
frequency comb (figure from [14]).

The first zero of A2 (t′) occurs at time tp′ such that [(2n+1)2π ∆ν t′] = π . Since the FWHM
∆τp of A2 (t′) is approximately equal to tp′, we have

∆τp ≈ 2π/(2n+1)2π∆ν = 1/∆νL (3.33)

Where ∆νL is the total oscillating bandwidth, as defined above. So we have deduced
the most important characteristic quantities of a mode-locking optical pulse, but we have
resticted our considerations to the unrealistic case of equal-amplitude mode-spectrum. A
more realistic theory can be developed assuming a bell-shaped form for the spectral envelope.
As an example, it could be considered Gaussian distributed. In this case, the field amplitude
El of the l-th mode is given by

E2
l = E2

0 exp

[
−
(

2l∆ν

∆νL

)2

ln2

]
(3.34)

where ∆νL represent the FWHM o fthe spectral intensity devided by a factor 2π .
Starting from the same linear phase relation of the precedent case, it can be shown that

the total field E (t) can be again expressed as in Equation 3.29. Approximating the sum in
A(t′) by an integral, the field amplitude becomes proportional to the Fourier transform of the
spectral amplitude El . Then the square of A(t), i.e. the pulse intensity is a Gaussian function
of time:

A2 (t) ∝ exp

[
−
(
−2 t
∆τp

)2

ln2

]
(3.35)
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tp
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Figure 3.10 Time domain and Frequency domain representation of the mode-locking pulse
where fCEO and the phase shift ∆ϕ are present.

Where ∆τp is the width of the pulse intensity and can be seen as

∆τp = 2 ln2/π∆νL ≈ 0.441/∆νL (3.36)

Ideally, in the time domain, the output of a mode-locking laser is a sequence of pulss
that are copies of the same pulse separed by a time τp. When instead dispersion in cavity
is considered, the time separation remain the same, but a slip of phase between different
pulses is introduced as shown in Figure 3.10 [18]. In frequency domain this can be see as a
shift of the entire comb to the integer harmonics of frep by a frequency offset fCEO (Carrier
Envelope Offset). Then the l − th comb line corresponds to a frequency

fl = l frep + fCEO = frep (l +∆ϕCEO/2π) (3.37)

It is then clear that the characteristic parameters in frequency comb generated by a mode-
locking laser are two: the repetition rate τp and the frequency offset fCEO.

Mode locking condition can be reached by many methods that can be devided into two
categories[18]:

• Active mode-locking, in which the mode-locker is driven by an external source
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• Passive mode-locking, in which the mode-locker is not externally driven

Active mode-locking is usually achived by placing inside the laser cavity either a phase mod-
ulator which periodically varies the optical lenght of the cavity, or an amplitude modulator
which produces a periodic modulation of the cavity loss. In some cases mode locking can
be achieved by periodic modulation of the laser gain. We cite here three different passive
mode-locking methods: fast saturable-absorber mode-locking, Kerr-lens mode-locking and
Nonlinear Polarization Rotation (NPR) fiber lasers4. A fast saturable-absorber permits light
oscillations only when it is satured, favoring high intensity peaks. Most famous example of
saturable-absorber is the so called SESAM. Kerr-lens model-locking instead exploits the Kerr
non-linear effect, that causes a dependance of refraction index of a material by the intensity
of the radiation. If the laser cavity is projected to be stable only when the refraction index of
a Kerr-medium inside it is the one obtained for high peak intensities, low intensity pulses will
be lost during the round trip, leading to a selection of the pulses circulating in the cavity, then
to the mode-locking condition. NPR fiber lasers exploit different polarization rotation in a
nonlinear fiber for different pulse intensity [19]. If a pulse with elliptical polarization is sent
into a nonlinear fiber, such polarization will rotate of a term proportional to the pulse intensity
by nonlinear effect. Then, using λ/4 waveplates, λ/2 waveplates and linear polarizers it is
possible to select high intensity narrow pulses, leading to mode-locking condition.

3.5 Discriminator and Servo: electronic concepts

The importance of Electronics in most of experimental fields of physics is huge, expecially
for experiments in which electronics is a fundamental part of the whole feedback system,
like this thesis work. From this point of view the aim of this section is easily understandable:
due to the presence of many electronic components (low pass filters, operational amplifiers,
photodiodes and some others) it is important to introduce the basic concepts necessary for
the comprehension of the experimental setup. Firstly we will describe filters used both in
discriminator and in servo, then we will address the other main electronic components used.

3.5.1 Signal filtering

Electronic signal filtering can be obtained using a variety of different devices. In this
thesis work we only use single pole low-pass and high-pass filters and Butterworth filters that
are here described. Single pole ideal filters shown in Figure 3.11 consist of a resistance and

4NPR is the principle of operation of our Menlo Orange oscillator.
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Figure 3.11 Electric schematics of ideal single pole filters.
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Figure 3.12 A typical Butterworth low-pass filter of order n (n odd) in π configuration.

a capacitance and can be described analytically by the following complex transfer functions
G( f ) = Vout

Vin
[20]

Ghigh( f ) =
i2π f RC

1+ i2π f RC
(3.38)

Glow( f ) =
1

1+ i2π f RC
(3.39)

respectively for high and low pass band. Low-pass Butterworth filters, shown in Figure 3.12
are inductive-capacitive filters and are designed in order to obtain a frequency response as flat
and sharp as possible[20]. Two different configurations exist: T and π . In a T Butterworth
filter the first element is an inductance, while in a π filter the first element is a capacitance.
The choice of a configuration or the other is strictly related to circuit characteristics, for
example π configuration may be preferable when load impedance is much lower than source
impedance, while T configuration is better in the opposite case, so when load impedance
is higher than signal impedance. The complex transfer function can be easily written using
approximated real coefficients and depends from the number of poles constituting the filter.
As the order of the filter, that is the number of poles, increases we have:
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(a) Amplitude of G( f ). (b) Phase of xm ( f ).

Figure 3.13 Amplitude and phase of G( f ) of ideal Butterworth low-pass filters for the first 7
orders.

G( f ) =



G0
a+1 1st order (3.40a)

G0
a2+1.4142a+1 2nd order (3.40b)

G0
(a+1)(a2+a+1)

3rd order (3.40c)

G0
(a2+0.7654a+1)(a2+1.8478a+1)

4th order (3.40d)

G0
(a+1)(a2+0.6180a+1)(a2+1.6180a+1)

5th order (3.40e)

G0
(a2+0.5176a+1)(a2+1.4142a+1)(a2+1.9319a+1)

6th order (3.40f)

G0
(a+1)(a2+0.4450a+1)(a2+1.2470a+1)(a2+1.8019a+1)

7th order (3.40g)

where G0 is the amplitude at zero frequency, a = i f
fc

and fc is the cut frequency of the

filter, defined as the frequency at which G( f )
G0

= −3dB. Amplitude and phase of G( f ) for
different orders are shown in Figure 3.13. It is clear from the figure that the frequency cut is
characterized by high sharpness and increases with order of the filter.

3.5.2 Circuits with operational amplifiers

Operational amplifiers, also known as Op-Amps, are widely diffused electronic devices
used in a large variety of circuits, including our servo stage. Op-Amps behavior is defined by
two Golden Rules[20]:
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(b) Inverting amplifier.

Figure 3.14 Electric schematics of typical ideal non-inverting and inverting amplifiers.

• The output attempts to do whatever is necessary to make the voltage difference between
the inputs zero

• The inputs draw no current

In addition to these points, other important features of ideal operational amplifiers are the
infinite input impedance, the null output impedance and the infinite bandwith. Fundamental
features and golden rules can vary from the ideal case to the reality. As an example, a
voltage difference of a fraction of millivolt is present between the inputs and a little input
current is present (on the order of few pico Ampère), but these contribution can be considered
negligible in the most of cases and ideal rules are so valid. Basic Op-Amps circuits can be
used to amplificate a signal in non-inverting or inverting configuration. Two typical schemes
adopted for this purpose are sketched in Figure 3.14. The complex transfer functions can be
directly derived from the golden rules and their expressions for the ideal non-inverting and
inverting amplifiers are respectively [20]

Gnon-inverting = 1+
R2

R1
(3.41)

Ginverting =−R2

R1
(3.42)

It is worth noting that the input and output impedances of the non-inverting amplifier are
given by Zinput = ∞ and Zoutput = 0 respectively, while in the inverting amplifier we have
Zinput = R1 for the input and Zoutput = 0 for the output.

Another useful application of the operational amplifier is the integrator circuit, which is
one of the fundamental components of the feedback system used in this thesis work. The
typical scheme of this circuit is shown in Figure 3.15. The scheme is similar to inverting
amplifier, so, to find out the analytic expression for the complex gain function we have to
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Figure 3.15 Electric schematic of a typical inverting integrator.

equate the current flows through R and C. So we have

Vin

R
=−C

dVout

dt

and thus
Vout =− 1

RC

∫
Vin dt + constant

which is the integral of the input signal. So, the complex transfer function associated to the
inverting integrator can be calculated as [20]

Ginverting( f ) =− 1
i2π f RC

(3.43)

Until now we have assumed that operational amplifiers were ideal, but in experimental
setups some non-ideal effects have to be considered. The only non-negligible effect that we
had to deal with is related to the bandwidth of the operational amplifier, which is limited and
in first approximation can be modeled as single pole limited [20] and it is not infinite as in
the ideal case. The non-ideal complex transfer function can be written as

A( f ) =
A0

1+ i f
fp

Where A0 is the open loop gain at zero frequency, while fp is the frequency of the pole,
defined as the frequency where amplitude becomes −3dB with respect to A0.

When the loop is closed and the feedback is purely resistive, so the feedback is frequency
independent, the effect of the real operational amplifier leads to a simple expression of the
gain [20]

G( f ) =
G0

1+ i f
fp
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Figure 3.16 Scheme of the actuator modeled as a little mass mm (piezoelectric and mirror)
attached to a big mass (the universe), which is considered infinite with respect to the first one.
The harmonic oscillator associated to this system is represented by the spring constant km
and the damping constant γm.

where G0 is the gain of the feedback (for example −R2
R1

for the inverting amplifier) and fp

is its bandwidth with close loop. This can be easily calculated assuming that the so called
Gain–BandWidth Product (GBWP) is constant5. We simply have

fp =
GBWP

G0

3.6 Actuator: harmonic oscillator model

The actuator is the part of the feedback system which is able to read the error signal
generated with Pound-Drever-Hall technique and properly modified by the servo and to apply
it to the cavity, in order to correct its resonance frequency and follow the external reference.
It consists of two main parts: one of the cavity mirrors and a piezoelectric crystal attached
to it, which stretches and contracts in response to the signal coming from servo. Hence, it
moves the mirror modifying the cavity length and thus converting the signal into an optical
frequency. This kind of system can be modeled as a series of driven damped harmonic
oscillators, each of which represents a different connection between two components[21]. At
a first step we introduce just one harmonic oscillator representing the piezoelectric, that is the
connection between the mirror and the optical table, as shown in Figure 3.16. In particular
we can consider the optical table having an infinite mass respect to the other parts of the
physical system and we call it Universe. The equation of motion of this kind of system is

5The GBWP is defined simply as the product of the gain and the bandwidth. The GBWP of an operational
amplifier is usually given on the datasheet.
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(a) Amplitude of xm ( f ). (b) Phase of xm ( f ).

Figure 3.17 Amplitude and phase of xm ( f ) for a single harmonic oscillator with a resonance
frequency of 20kHz, where we have used the typical values γm = 100kgs−1 and mm = 10g.

given by
Fm (t) = mm ẍm (t)− γm ẋm (t)+ km (xm (t)− x0) (3.44)

where xm (t) is the position of the mirror as a function of the time, Fm (t) is an external
driving force applied to the mirror by means of the piezoelectric, mm is the mass of the
mirror and the piezoelectric, km and γm are respectively the spring constant and the damping
constant associated to the piezoelectric while x0 is the rest position of the mirror. One
can solve Equation 3.44 for xm ( f ) by Fourier transforming and using the property that
F(ġ(t)) = iω F(g(t)), so that the results is [21]

xm (ω) =
Fm (ω)

mm ω2
0 −mm ω2 − iγm ω

(3.45)

where ω is a pulsation, related to frequencies by ω = 2π f , then the resonance frequency
ω0 =

1
2π

√
km
mm

= 1
2π

f0, with f0 resonance frequency of the system. From the last formula
directly follow the amplitude of the system response and its phase.

The trends of the amplitude and phase of xm ( f ) are shown in Figure 3.17. It is important
to note that near the resonance phase delay increases rapidly, limiting the control system
bandwidth to a value under the resonance frequency.

It is possible to make a more realistic (but more complex) description of the actuator
taking into account the mirror actually is not directly attached to an infinite mass [21]. It
can be done adding a counterweight between the mirror and the table (which has again an
infinite mass, the Universe), so that the system can be described as two harmonic oscillators
in series, as shown in Figure 3.18. We have two coupled equations of motion for the mirror



42 Theoretical concepts: active optical stabilization

Universe
C

ou
nt

er
w

ei
gh

t

Pi
ez

o

M
ir

ro
r

≡ Universe

C
ou

nt
er

w
ei

gh
t

M
ir

ro
r

km
γm

mm

kc
γc

mc

xx0 xc xm

Figure 3.18 Scheme of the actuator modeled as a little mass mm (piezoelectric and mirror)
attached to another mass mc (the counte) attached to a big mass (the optical table), which is
considered infinite. The two harmonic oscillators associated to this system are represented
by the spring constant km and the damping constant γm of the piezoelectric and by the spring
constant kc and the damping constant γc of the counterweight.

and the counterweight respectively

Fm (t) =mm ẍm (t)− γm ẋm (t)+ km ((xm (t)− x0)− (xc (t)− x0))

Fc (t) =mc ẍc (t)− γc ẋc (t)− γm ẋc (t)+ kc (xc (t)− x0)− km ((xm (t)− x0)− (xc (t)− x0))

where the new terms kc and γc are the respectively the spring constant and the damping
constant of the connection between the counterweight and the Universe and are different
from km and γm. Since the external force can be generated only by the piezoelectric, we can
place Fc = 0. The two coupled equations set can be solved for xm ( f ), obtaining [21]

xm ( f ) =
Fm ( f )

−mm (2π f )2 − i2πγm f + km
−(2π f )2 mc−i2π f (γc+γm)+kc

−(2π f )2 mc−i2π f (γc+γm)+kc+km

(3.46)

Amplitude and phase of xm ( f ) are shown in Figure 3.19. Notice that the counterweight
could introduce another resonance, which would further limit the control bandwidth of the
system. It is worth to consider that a real actuator system often has more than one or two
resonances, so the introduction of the counterweight does not completely solve the problem
of modelizing the system.

A way to improve the control bandwidth is to increase km, because this leads to an
increase of f0 (remembering that f0 =

√
km
mm

) and so of the bandwidth. This can be done for
example with the so called preloading, which consists of clamping the piezoelectric and the
mirror assembly in order to increase the mechanical tension over the first one, placing an
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(a) Amplitude of xm ( f ). (b) Phase of xm ( f ).

Figure 3.19 Amplitude and phase of xm ( f ) for two harmonic oscillators in series, with
resonance frequencies of 20kHz and 10kHz, where we have used the typical values γm =
100kgs−1, mm = 10g, γc = 100kgs−1 and mc = 500g.

O-Ring between the mirror and the clamp.In this configuration, additional terms are summed
to k and γ: k = km + kpre and γ = γm + γpre. The equations of motion in the two cases of
single oscillator are trivial, indeed it is sufficient to make the substitution km → km +kpre and
γm → γm + γpre. Then is evident that increas k ampliate the control bandwidth of the actuator
system, as can be see clearly in Figure 3.20, where amplitude and phase of xm ( f ) are shown
for different theoretical values of the preload in the case of single harmonic oscillator.
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(b) Phase of xm ( f ).

Figure 3.20 Amplitude and phase of xm ( f ) for a single harmonic oscillator with preloading.
Here we can notice that the resonance frequency moves to higher values as we increase
the preload (see the arrows in the two graphs), but the amplitude peak decreases an so the
dynamic of the piezoelectric.



Chapter 4

Experimental setup

In this chapter we will describe the experimental setup used in this thesis work. Firstly,
the whole apparatus will be introduced, then a description of the laser source and the optical
cavity characterization will be performed, while the detailed description of the feedback
system will be left to the next chapter.

4.1 Global layout

The experimental setup consists of three main parts: the laser line that lead the light beam
to the Fabry-Perot cavity, the optical cavity and the feedback system. The general layout
scheme of the apparatus is shown in Figure4.1. We will explain the feedback system and
the stability experimental results in detail in the next chapter, while the other parts of the
experimental setup will be treated in this chapter. The laser line is fundamental to adequately
manipulate the laser beam before the coupling with the optical cavity. In particular, the
path to the cavity is formed by optical components that changes polarization, dimension,
divergence and spectral width of the laser beam. The laser beam is producend in an Menlo
Orange Oscillator horizontally polarized. The output laser light then encounters a wavaplate
that rotates the polarization of π/2 and a two lenses system that allows to focus the beam and
(after the second lens) to re-collimate it. In the point of minimum beam width is positioned
an Electro-Optical Modulator which is part of the feedback system. After the second lens the
laser beam pass through another waveplate that restores the horizontal polarization. Then
the light is sent to a 4-f spatial filter that selects a 2 nm wide spectrum. The beam leaving
the 4-f is sent to a mirror that changes the direction and allows it to enter inside a two
lenses telescope that adjusts the beam dimension in order to obtain a better matching with
fundamental cavity mode. Using two consecutive mirrors the beam is sent inside the cavity,
which is formed by four fused silica mirrors. The third and fourth mirrors are mounted on
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Figure 4.1 Experimental setup scheme. Main components names are explicitly shown, while
lenses and mirrors are labeled L and M respectively.

Figure 4.2 The experimental setup photographed in laboratory. The laser path is highlighted
in red.
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Figure 4.3 Picture and electrical schematics of the photodetector in our experimental setup.

micrometric slide that allows a precise control over their position. Moreover, the third mirror
is also controlled by a piezolectric crystal which acts as Actuator of the feedback system.
Not all the incident radiation can enter inside the cavity: most of it is reflected and goes on
the feedback system Discriminator that is connected to the Servo. Then the beam reflected by
the first mirror of the cavity plays a crucial role in the stabilization of the cavity itself. If the
resonator and the laser are in resonance, part of the radiation is transmitted outside the cavity
through the mirrors and can be exploited to obtain informations like the power inside the
cavity or the frequency detuning between laser and cavity. In particular, the beam outgoing
from the second mirror of the cavity is sent to a photodetector made with a FDS1010 Si
photodiode and a 470Ω resistance, as shown in Figure 4.3.

The photodetector signal can be read by an oscilloscope like in our case, where we used
a LeCroy 9360 oscilloscope to perform all the measurements. Here we have to highlight
that talking about voltage or power of the signal is essentially the same thing, because these
quantities are related in our photodetector linearly, since

P =V
1

η R
(4.1)

where η = 0.638 A
W is the responsivity of FDS1010 photodiode at λ = 1030nm and R= 470Ω.

Then, it will occur that in next sections we will refere to power or voltage indiscriminately in
non-measleading cases. Also the transmission signal outgoing from the third cavity mirror
has been exploited for measures: using an imaging system and a CCD camera it is possible
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to estimate the spot dimension and shape on the mirror and the waist dimension in the
cavity focus. It is important to note that the laser source power is variable in function of
pump diodes electric current and amplification diodes electric current. We have defined
the standard conditions for the measures performed during this thesis work looking for
the best compromise between good power level and risks of Q-switch fenomenon. Such
conditions correspond to a pump diode current of 507 mA and an amplification diodes current
of 800 mA.

4.2 Laser source

As previously explained, the laser beam is manipulated in order to reach a better coupling
with the optical cavity. Its features has been experimentally characterized for what concernes
temporal (hence spectral) properties, shape and intensity noise.

4.2.1 Spectral and temporal properties

In order to obtain a better matching between the laser beam and the cavity fundamental
mode and reproduce the MariX experimental condition in which the light pulses spectrum
will be 2 mm wide, a spectral selection has been performed. In Figure 4.4 are shown
respectively the spectrum before and after the spectral selection, experimentally acquired
using a commercial available Thorlabs OSA Spectrum Analyzer with 1 nm resolution.

Such selection is achieved using a so called 4-f spatial filter, which is composed of two
1200 lines/mm diffraction gratings, two lenses with focal length equal to 100 nm and a slit.
The incoming laser beam is reflected by the first diffraction grating that spatially separates
the spectrum components. After the spectral separation the light is collimate and selected
in frequency by the first lens and the slit. Since the angle of incidence is equal to 22◦, the
2 nm wide spectrum can be selected by a 0.46 mm wide slit. The second lens recomposes
the beam on the second grating and the laser pulse then leaves the 4-f filter. The name 4-f is
related to the distance of the optical components which are all equal to f , namely the focal
length of the two lenses.

In terms of power, the spectral selection lead to a reduction of a factor ten, because of the
cut on frequencies, but also because of inefficience of the diffraction gratings. Indeed, their
effieciency is dependent from polarization, angle of incidence (in our case maximized at 35
degrees), wavelength and other factors and about the 40% of radiation is lost.
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Figure 4.4 Above: light beam spectrum before the spectral selection. Note that it is about
35 nm wide and centered around 1030 nm. Below: light beam spectrum after the spectral
selection performed by the slit. Here the spectrum is about 2 nm wide and centered around
1025 nm.
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From the temporal point of view, the spectral selection causes a pulse broadening. Since
the initial spectrum is 26 nm wide, the pulse length is less than 200 fs1 and it is strongly
influenced by the settings of the compressor inside the commercial Menlo apparatus. But if
the spectrum is reduced to only 2.5 nm, then the pulse temporal can be elongated on the order
of 0.5 ps and the compressor is no longer dominant. This value can be estimated starting
from the Gaussian spectral profile and supposing we are in transform limit condition:

A(ω) = e−
ω2

∆2 −→ A(t) = e−
∆2
4 t2

where ∆ = FWHM/1.177 and ω = 2π ν . Then the intensity is

I (t) ∝ e−
∆2
2 t2

= e−
2 t2
τ

Hence
τ2

2
=

2
∆2 −→ τ =

2
∆

Then, recalling that ∆ω = 2π
c

λ 2 ∆λ and λ ≈ 1000nm = 10−6m, approximating ∆λ with
2nm = 2 ·10−9m and π · c with 109m/s we can obtain an indicative pulse temporal length
value:

τ =
2
∆
=

2
2π

c
λ 2 ∆λ

=
λ 2

π c∆λ
≈ 10−12

1018 ∆λ
≈ 10−12

109 ·2 ·10−9 s ≈ 0.5ps (4.2)

4.2.2 Laser intensity noise

Intensity noise causes fluctuations of the laser power that directly affect the power inside
the cavity. Laser intensity noise can be measured by a photodetector placed before the first
cavity mirror; in this way the laser intensity noise can be decoupled from the noise indroduced
by the Fabry-Perot cavity. The photodiode can only record a voltage signal proportional to
the incident power, then fluctuations on the voltage signal correspond to power (or intensity)
fluctuations. From the photodiode signal is possible to calculate the Fourier transformation
directly on the oscilloscope. Power Spectral Density calculation from the oscilloscope FFT
data has been performed by a software written in LabView able to recognize the time interval
and calculate Sν ( f ). The measured spectrum is shown in Figure4.5. The photodetector
bandwidth is about 900 kHz, because the cut frequency is given by fcut =

1
2π RC , where the

capacitance is 375pF and resistance is 470Ω in our case.
We can note a general decreasing behavior of the PSD for increasing frequencies. Four

peaks stand out from the smooth background at frequencies that are approximately multiples

1Data taken from Menlo Orange datasheet
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Figure 4.5 The intensity noise Power Spectral Density S (ν) of the Menlo Orange laser
radiation is drawn in red, while the background noise (due to electronic components) is
drawn in black. The noise contibution of the frequency range represented in figure is about
0.25V , corresponding to a relative noise δV = 0.039%.
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Figure 4.6 Relative intensity noise of Menlo Orange oscillator performed via spectrum
analyzer at Politecnico di Milano.

of 90 kHz. Precisely, the peaks are located at 92.5 kHz, 182.5 kHz, 277.5 kHz and 367.5 kHz.
Moreover, the frequencies of such peaks are indipendent from the pump diodes current and
from the amplification diodes current of the Menlo Orange Oscillator. The noise obtained
integrating from 0 Hz to 2 MHz is σ = 1.2 ·10−3V . Dividing this value by the mean value of
laser voltage signal measured by the photdetector is equal to 3.14V , we obtain δV = 0.039%.
Such value is considerably lower than the MariX cavity power fluctuation requested limit
of 2%, although all the spectrum should be considered, then the Orange laser is a good
candidate to be part of the final experimental configuration.

We also performed a wide frequency range measurement at Dott. G. Galzerano’s labora-
tory at Politecnico di Milano. Such measurement has been done using a Agilent Electronic
Spectrum Analyzer. The laser beam has been sent directly to a photodetector connected to
the ESA, firstly to measure the average incident power and then to measure the intensity
fluctuations. The results are exposed in Figure 4.6, where the intensity noise is expressed in
dB/Hz.
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Figure 4.7 Example of beam radius measure: the screenshot shows the intensity profile on
the vertical axis and on the horizontal axis.

4.2.3 Laser beam features

Fundamental parameters of a laser beam are certainly its dimension and intensity profile.
In particular, the dimension of the cavity fundamental mode and of the incoming laser beam
has to be as similar as possible to in orde to have a good cavity-laser mode coupling and avoid
the presence of high order modes. We have directly measured the beam radius exploiting a
Thorlalbs CCD camera and ThorCam software. Such software allowed us to measure the
beam FWHM, that is directly related to the beam radius as

w(z) =
FWHM (z)√

2 ln2

where the Full Width Half Maximum in micrometers is calculated from the measured value
in pixels multiplying by a factor 5.2 µm

px . The relation written above is valid only for Gaussian
beams, like the one generated by our Menlo Orange oscillator. A screenshot taken from
ThorCam software used to measure the beam radius is shown in Figure4.7. The output
beam has been directly measured at the oscillator output at a distance d1 = 132mm and at a
distance d2. We obtained values of wH = 472µm on the horizontal axis and wV = 658µm on
the vertical axis in d1 and values of wH = 725µm on the horizontal axis and wV = 658µm
on the vertical axis in d2. The measured beam radius is about 2 times lower than the cavity
fundamental mode dimension, so without any correction the mode coupling between laser
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and cavity would be very bad. Moreover, the beam needs to be collimated when injected
into the cavity. Then, in order to adequately manipulate dimension and divergence of the
beam, two telescopic system has been implemented in the experimental setup before the
light enters the Fabry Perot cavity. The first one is composed by a lens with a focal length of
100 mm and a lens with a focal length of 250 mm. This system allow us to enlarge the beam
of a factor about 2.5 and to correct the divergence. A fine correction can be performed by a
second telescopic system, positioned after the 4-f spatial filter and made by two identical
lenses with focal length equal to 100 mm. It is important to underline that the first lens is
mounted on a micrometric slide with the aim of obtain a fine control on the magnification
factor of telescope and beam divergence.

4.3 Optical cavity

The optical cavity realized in this thesis work is composed by four high-reflectivity
mirrors disposed in the so called bow-tie configuration. In Figure 4.8 is drawn the Fabry-
Perot scheme. The first cavity mirror is labeled A and it is a flat mirror. On this mirror the
incoming external beam is injected inside the cavity and partially reflected on the feedback
discriminator. The second mirror (labeled B) is a curved mirror with a nominal value of
radius of curvature equal to 758 mm. Also the mirror C is curve, with a nominal radius of
curvature of 750 mm and it is mounted on a micrometric slide, as the last mirror D. The last
mirror is flat as the mirror A. Behind the mirror D is mounted a piezoelectric crystal: this is
the Actuator of the feedback system and allows a very precise regulation of the position of
the mirror. The total length of the cavity is fixed by the resonance condition, while the angles
α and β are choosen in order to have the lowest angle of incidence between the electrons and
photons permitted by mechanical requirements. In fact, since the electron pipeline will pass
between mirrors A and C, it will go through the cavity and then it will pass between mirrors
B and D, a distance about ten centimeters between such mirrors has been left. We measured
the transmissivity of the mirrors in order to characterize them and estimate their reflectivity:

TA = 1.27 ·10−3 TB = 7.30 ·10−4 TC = 3.34 ·10−4 TD = 5.33 ·10−4

It is possible to estimate the reflectivity coefficients from the tansmissivity values, avoinding
dispersion effects. If we define R = (1−T ), we obtain

RA = 0.9987 RB = 0.9993 RC = 0.9997 RD = 0.9994
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Figure 4.8 Fabry Perot cavity scheme where the laser beam is drawn in red. The first mirror
is labeled A, the second is labeled B, while the third and fourth mirrors are labeled C and D
respectively. The angle α has been experimentally measured and it is equal to 7.65 degrees,
while β = 6.27◦.

Using this method we overextimate the reflectivity values and their product RTOT = 0.9971.
From experimental cavity Finesse, we estimated a more reliable (and lower) total reflectivity
value RTOT = 0.98676. Although the nominal values of the radius of curvature of the two
curved mirrors are known from the production company datasheet, these values have been
experimentally measured in laboratory, thus obtaining 767 mm for mirror C and 741 mm for
mirror D.

4.3.1 Cavity modes

As every stable resonator, the bow-tie Fabry-Perot cavity realized in this thesis work
has precise solutions for the oscillating fields inside it, thus it has well-defined modes. Its
planar nature leads to a break of the cylindrical symmetry, then our cavity presents Hermite-
Gaussian modes. Exploiting an imaging system done by a 100 mm focal lens and a mirror,
whe can recreate the image of the spot on mirrorC on the CCD camera. It is so possible
to capture the whole modal structrure of the resonant cavity changing the cavity length,
therefore its resonance frequency, as we will explain in next Subsection. Examples of the
low-order modes of the cavity are shown in Figure4.9.

4.3.2 Cavity alignment and mode-matching procedure

A prelimirary step in laser-cavity coupling is the external beam alignement and mode-
matching to the cavity resonator and only when the system is properly coupled the stabi-
lization is performed. Initially, the length of the cavity has to be choose as to be equal
to
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Figure 4.9 Hermite-Gaussian modes of our optical cavity. Images acquired by CCD camera.

LC = cτrep

where τrep is the mode-locking repetition rate of 10−8 seconds. Note that this condition is
necessary only when the used laser is in pulsed regime, like in our case, but not in countinous
wave regime, where the resonance condition is easier to satisfy. The resonance length can
be precisely reached exploiting the micrometric slides of mirror C and D. Using a triangual
wave signal sent on the actuator (directly or passing through the Servo) it is possible to scan
the length of the cavity around the value of null voltage selected on wave generator: when
voltage rises and falls, the piezoelectric crystal shortens and elongates the cavity length with
a sub-micrometric sensibility. Indeed, assuming a linear response of the piezoelectric, we
can write the cavity length as

L = L0 +2 ·αpiezo ·∆V = L0 +δL (4.3)

where the factor 2 is necessary to consider the reduction of both L3 and L4, while αpiezo is
a coefficient such that a voltage difference of some Volts changes the cavity length on the
order of the micrometer. When the peak-to-peak voltage of the triangular wave is enough to
obtain δL > λlaser we can see more than one Free Spectral Range during the cavity scansion
then all the resonating modes.
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Figure 4.10 The voltage triangular wave sent to the piezo and the transmission signal are
represented in figure. Here the cavity length is incorrect, then there is not resonance.

The transmitted signal measured by the photodetector after mirror B during the triangular
wave cycle can be used to monitorate the cavity-laser coupling. The first steps (so the
cavity length correction procedure) seen from the oscilloscope are shown in Figures 4.10,
4.11 and 4.12. When the resonance length has been reached, many modes are present
within a FSR. In order to obtain a perfect matching between the incoming gaussian beam
and the fundamental mode of the cavity, it is necessary to avoid misallignement and mode
mismatching. Mismatching occurs when the incoming beam has a different dimension
from the cavity fundamental mode one or when the waist axial position is incorrect. On
the other hand, misallignement occurs when the incoming beam is shifted from the cavity
centre or when the incidence angle is non-zero respect to the cavity mode axis. This fact
can be theoretically shown[22] writing the incoming laser beam wavefunction Ψ(x) as a
superposition of the cavity modes Um,n (x) (in cartesian coordinates) or in terms of the radial
modes Vp (r). The ideal situation is the one in which Ψ(x) perfectly matches the cavity
fundamental mode, then we have perfect allignement and mode-matching. It can be shown
that misallignement and mismatching lead to different expansions of Ψ(x) as a sum of the
fundamental cavity mode U0 (x) or Vl,m (r) and higher-order factors. In particular, if we
define k = p+q in cartesian coordinates and k = l +2m in radial coordiantes, we find out
that misallignement is responsable of the presence in our cavity of odd k Hermite-Gaussian
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Figure 4.11 The cavity length is near the right one, then transmission peaks appear.
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Figure 4.12 Cavity in resonance. The higher peaks correspond to the fundamental mode, the
peaks immediatly near to it are second-order modes, while the standing alone modes are
first-order modes
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modes in Ψ(x) expansion like T EM0,1 and T EM0,1, while mismatching causes the arise
of even k Hermite-Gaussian modes such as T EM2,0 or T EM0,2. If we define the cartesian
fundamental mode

U0 (x) =
(

2
πw2

0

)1/4

exp

(
−
(

x
w0

)2
)

and the first off-axis mode

U1 (x) =
(

2
πw2

0

)1/4 2x
w0

exp

(
−
(

x
w0

)2
)

we can for example demonstrate the effect of a misalignement due to a shift ax of Ψ(x)
respect to U0 (x), namely

Ψ(x) = AU0 (x−ax) = A
(

2
πw2

0

)1/4

exp

(
−(x−ax)

2

w2
0

)
(4.4)

if ax ≪ w0 we can expand Equation 4.4 as

Ψ(x)≈ A
[
U0 (x)+

ax

w0
U1(x)

]
(4.5)

So a translational misalignement introduces a first order non-fundamental mode, correspon-
dent to an odd value of k. It can be also shown that that in case of small difference between
beam waist dimension and cavity waist size, hence in the case of mode mismatching due to
w0′= w0 (1+ ε), we can write the incoming beam in radial coordinates as a superposition of
the fundamental mode and the the lowest non-fundamental radial mode (l = 0,m = 1) as

Ψ(r)≈ A [V0 (r)+ εV1 (r)] (4.6)

Since in radial coordinates k = l +2p, the mode mismatching is associated to the raise of
even k modes. Many different examples of misalignement and mode mosmatching exist,
but they all lead to odd and even k respectievely as in the cases taken in account above [22].
Considering that our goal is to have Ψ(x) = U0 (x) in our experimental system, we must
correct misalignement and mode mismatching conditions. We can reduce the laser beam
shift and angle of incidence using two mirror positioned before the first mirror of the cavity,
while mismatching effects can be reduced by the telescopic system posed after the 4-f spatial
filter. Figure 4.13 shows a screenshot from the oscilloscope in which, after allignement
optimization, T EM0,1 and T EM1,0 have been deleted. Figure4.14 shows the modal structure
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Figure 4.13 After misalignement correction only T EM0,0 and even k modes survive.

after mismatching correction: only fundamental mode is visible (higher order modes have
been suppressed or strongly reduced).

4.3.3 Cavity Finesse

Cavity Finesse is a fundamental parameter of a resonator. Expecially for MariX applica-
tion as Compton X-Ray source Finesse is very important, since the power gain is directly
related to it as we have already demonstrate in Subsection 3.3. Finesse of the cavity used
in this work has been measured acquiring data from the oscilloscope and exploiting the
transmitted signal on the photodetector. Again triangular wave has been sent to the actuator,
in order change cavity length and scan more than a Free Spectral Range and then see more
than one fundamental mode peak as shown in Figure4.15.

The temporal distance between two T EM0,0 has been measured and devided by the time
corrisponding to the FWHM of the higher peak in the scansion, so obtaining the Finesse value
by F = τFSR

τFWHM
. To gain precision in measurement it is also possible to change the temporal

scale of the oscilloscope. It is here important to note that the scan frequency could ruin the
measures, indeed for fast scanning (like at 200 Hz or 100 Hz) the peak is low in power and
asymmetric because the cavity characteristic time is not enough lower than the transmission
peak temporal width. In particular, the characteristic time τc is on the order of 10−6 seconds
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Figure 4.14 After mismatching adjustments T EM2,0 and T EM0,2 power is strongly reduced.
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Figure 4.15 Example of a finesse measurement from the oscilloscope: the Free Spectral
Range is devided by the peak width.
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Figure 4.16 Peak shape for a piezo scan frequency of 100 Hz. The asymmetry due to the
eccessive scan speed is here evident. Indeed, the cavity characteristic time τc is comparable
with the width of the transmission peak.

(a more precise value is calculated later in this subsection), while the temporal HFHM of
a transmitted peak at frequency scan of 100 Hz is about 6 µs wide. Another cause of the
asymmety could be the characteristic time of the photodetector, namely τPh = 1.76 ·10−7s,
but we have considered it negligible respect to τc. It is then important to use a scan frequency
sufficiently low. On the other hand, at very low frequencies like 5 Hz, the piezoelectric
actuator is subject to disturbances and noises that deform the peak shape and forbid precise
measurement. In Figures 4.16, 4.17, 4.18 are presented some examples of peak shape at
different frequencies. We have choosen a scan frequency of 10 Hz as the best compromise.
With an incident power of 0.01 W, the transmitted power detected after mirror B is equal

to 0.37 mW (corresponding to 110 mV voltage peak)and in such condition we measured a
Finesse value of F = 470±25. From the Finesse experimental value can be estimated the
product of all reflection coefficients of cavity mirrors and the power inside the cavity. SolvingF = π 4√RTOT

1−
√

RTOT

PtranB = TB Pin
1−R1

|1−√
RTOT |2

(4.7)
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Figure 4.17 Peak shape for a piezo scan frequency of 10 Hz. The shape is very symmetric if
compared to the one at higher frequencies and can be exploited in Finesse measurements.
The asymmetry is here strongly reduced because the temporal width of the transmission
peak is about 10 times longer than in the previous condition, then τc is negligible. A scan
frequency equal to 10Hz represents our best compromise in Finesse measurement.
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Figure 4.18 Peak shape for a piezo scan frequency of 5 Hz.Although the peak is symmetric
and the cavity characteristic time is enough lower than the peak width, disturbances and
noise deform the peak shape, avoiding precise Finesse measurements.

we find RTOT = 0.98676 and RA = 0.99804. Exploiting RTOT cavity characteristic time τC

can be calculated as
τC =

L
γ c

= 7.503 ·10−7s (4.8)

where L = 3m and γ =− lnRTOT . We can also estimate the radiation power inside the cavity,
which is given by

Pcav = Pin
(1−RA)∣∣1−√

RTOT
∣∣2 = 465mW (4.9)

4.3.4 Spot and Waist dimension

Know the spot dimension on mirros and the waist size in the focal point in function of
the distance of the curved mirrors is fundamental for the characterization of the bow-tie
cavity developed in MariX project. In particular, the spot size is very important at high
powers in order to avoid eccessive heating of mirrors, while the waist dimension is of great
importance especially thinking to the electron-photon scattering. We directly measured the
spot dimension out the mirror C exploiting the CCD camera, the ThorCam software and
an imaging system that recreates the mirror spot on the camera. From these data both the
waist dimension and the spot size on the mirror can be obtained. It is worth to note that the
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measured spot dimension is not the one on the mirror, but the spot dimension on its external
surface, so a mathematical correction has to be performed. But how to calculate the spot size
on mirror C and the waist dimension on focus starting from the experimental data? We made
use of the so called Far Field Technique[23]. The basic idea is simple: when zRayleigh ≪ z
the radius of a Gaussian beam can be asymptotically expanded as

w(z)≈ λ

π w0
z (4.10)

where w0 is the waist dimension that we are looking for and z is the distance from the
focus. Since our experimental data are taken outside the mirror, we have to consider the
matrix elements of the mirror interfaces (one curved interface and one flat, with a free space
propagation in fused silica between them), that corrects the beam propagation equation
(Eq.4.11). Counterpropagating the experimental spot dimension until the waist position, we
obtain the waist dimension. Then, defining z̃ as the distance of mirror C from the focus
position, we have

wspot−mirror (z) =
λ

π w0
z̃ (4.11)

Successively,we checked our experimental results with theoretical predictions. We can
calculate such theoretical functions of waist dimension and spot on mirror C size defining the
Round-Trip Matrix of the cavity, choosing as a starting position a point immediately before
the mirror C. Recalling that the matrix element corresponding to curved mirrors2 free space
propagation in paraxial approximation are respectively

MCurved =

(
1 0

−2/R 1

)
(4.12)

and

MSpace =

(
1 z
0 1

)
(4.13)

we are able to write the Round-Trip Matrix as a function of the curved mirrors distance d,
leaving p as a free parameter that determines the considered axis:

M{p}
RT =

(
1 L2

0 1

)
·

(
1 0

−2/R′
B 1

)
·

(
1 LTOT −L2

0 1

)
·

(
1 0

−2/R′
C 1

)
(4.14)

2Plane mirror’s matrix are simply the Identity Matrix so it is trivial to consider them in the beam propagation.
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where R′
B = [cos(θB)]

p and R′
C = [cos(θC)]

p , with p = −1 for the horizontal plane and
p =+1 for the vertical plane and while θB and θC are the incidence angles on mirror B and
C respectively. Note that the incidence angle has different values for the vertical and the
horizontal axis, while θB = α

2 = 3.85◦ and θC = β

2 = 3.14◦. It is then possible to obtain the

stability parameters mp =

[
M{p}

RT (1,1)+M{p}
RT (2,2)

]
2 , labeled mV and mH. We can then directly

calculate the theoretical beam dimension w(z) for both axes at the point in which the Round-
Trip has been started, so on mirror C. It is also possible to calculate the theoretical waist
dimension using a similar procedure. Indeed in this case the waist position is unknown, but
it can be calculated as a function of RB, RC, L2 and d. Such parameters can be exploited to
study the beam radius and find the point at which 1/Rbeam is null, that is z f ocus. When z f ocus

is known, the same procedure used to find the theoretical beam dimension on spot can be
exploited to calculate the wais dimension.

The spot size on mirror C wSpotMirror and the waist dimension w0 are shown in Fig-
ure4.19a and Figure 4.19b as a function of the distance between the two curved mirrors of
the cavity. The theoretical functions are also drawn.

Mode frequency is directly dependent on the stability parameter of the resonant cavity.
In fact, recalling 3.17

νnpq = FSR
(

n+
1/2+ p

2π
arccosmH +

1/2+q
2π

arccosmV

)
it is clear that mV and mH play a fundamental role. We directly observed this fact checking
the distance between the fundamental mode T EM0,0 and the nearest second order mode, thus
T EM0,2, for two different curved mirror distances so observing the difference

∆ν [(n,0,0)− (n−1,0,2)] = FSR
(

2
2π

arccosmV

)
(4.15)

In particular, we have choosen d1 = 758mm and d2 = 765mm and in both the cases we sent
to the actuator a 5 Hz triangular wave. The experimentally observed mode shift is exposed in
Figures 4.20a and 4.20b. If curved mirror distance reduces, stability parameters (horizontal
and vertical) values reduce approaching to -1. Since arccos is a decreasing function equal to
π when its argument is equal to -1, near the confocal configuration the distance in frequency
between the fundamental mode of longitudinal index n and the second order modeposed in s
with longitudinal index n-1 is lower than for higher values of mV and mH .
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(a) Spot dimension on mirror C as a function of the distance between mirrors B and C. The
continuous lines represent the theoretical behavior of the horizontal and vertical axes, while
the two spot images are examples of the spot shape for the near-confocal configuration (left)
and for a more stable situation (right). We can observe that the spot is almost circular when
d = 772mm, while near the confocal configuration the difference between vertical radius
and horizontal radius is about 1 mm.
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(b) Waist dimension in the cavity focal point. The continuous lines represent the theoretical
behavior of the horizontal and vertical axes. We can note that for configurations near the
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(b) Cavity modes for a curved mirror distance of 758 mm. Note that in this case the modes
separation is smaller than in the previous case.



Chapter 5

Feedback system and noise suppression

The feedback system deserves a separate chapter in this work because of its fundamental
importance and in order to better explain the experimental results achieved on the coupled
cavity-laser system. In the first part of the following chapter, a detailed characterization
of the feedback system components will be exposed. After that, we will discuss stability
performances and noise suppression results.

5.1 Feedback characterization

The feedback system components have been characterized and studied in order to com-
prehend their behavior. We will start discussing about the Discriminator, and then we will
write about the Servo and Actuator. The Source and the Reference of the feedback will not be
described because they were already explained in Chapter 4 as the FP cavity and the Menlo
laser oscillator respectively.

5.1.1 Discriminator

The Discriminator is the feedback component that generates the Pound-Drever-Hall
error signal which is sent to the Servo. The implementation scheme is shown in Figure5.1.
Its first part consist of an Electro-Optical phase modulator fed with an high voltage RF
(Radio Frequency) sinusoidal signal at a frequency of Ω = 3.5MHz. EOM generates two
sidebands in the laser beam which are sent into the cavity. The same RF signal is also sent to
a de-amplifier and phase shifter circuit and then to a mixer (Mini-Circuits Mixer ZFM-3+)
where it is used to demodulate the signal coming from the Discriminator detector. Indeed,



70 Feedback system and noise suppression

RF generator

Mixer

Detector

Laser beam
6-th order

Butterworth
LP filter

PDH signal
to Servo

EOM

Laser
beam

Deamplifier & Phase Shifter
Circuit

Figure 5.1 Discriminator scheme is here represented. Images of the main components such
as the EOM, the detector and the deamplifier are also provided.

since not all the laser beam enters the cavity, an appositely built fast photodetector1 reads
the reflected signal summed to the radiation transmitted from cavity mirror A. Such signal is
sent to the mixer where is demodulated using the de-amplified RF signal. Furthermore, the
phase shifter can introduce a relative phase correction between the signal from the detector
and the RF sine wave. The signal outgoing the mixer contains the frequency components
of the the carrier signal as well their sums and difference, for this reason a low-pass filter
(we used a 6-th order Butterworth filter with cut frequency of 100kHz) is needed after the
mixer in order to suppress high frequency contributions. The signal is then ready to be
sent to the Servo. EOM and mixer need to be fed by the same RF in order to modulate
and de-modulate the signal, but it is worth to note that the voltage amplitude needed by the
two components is completely different. In fact, EOM requires a quite high voltage, while
mixer input must be only 7dBm. In our case, the wave generator sends into the circuit a
sine wave with peak-to-peak amplitude of 12.2V . De-amplificator circuit is necessary to
reduce the amplitude and satisfy the mixer needs. Moreover, we have also to optimize the
reflected beam incidence on the detector: a good incidence is important in order to have a
good signal-to-noise ratio and an bigger PDH signal. Figure 5.2 is an image taken from the
oscilloscope of PDH signal outgoing the discriminator stage while a triangular wave is sent
to the actuator (as we have done for Finesse measurements).

1The fast photodetector has been designed from the Electronic research gruop of Physics department of
Università degli studi di Milano.
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Figure 5.2 PDH signal obtained during an actuator scan. The two 3.5 MHz sidebands of the
error signal are well visible. Below the error signal there is the corresponding transmission
peak.

From frequency to voltage: D(f)

The discriminator tranfer function converts the frequency detuning between the laser and
the Fabry-Perot cavity to a voltage signal. In particular, the PDH signal value is directly
related to such detuning. PDH error signal linear region is shown in Figure 5.3: here the
asymmetry of the signal for negative or positive detuning is well visible. More precisely,
we have VD ( f ) = [νr ( f )−νs ( f )]D( f ). In order to calculate D(f), we must consider both
the frequency-voltage conversion coefficient (that we name kdiscriminator) and the Butterworth
filter transfer function. Firstly, for a fixed scan frequency, the temporal distance ∆τS between
the carrier and one of the two sidebands is measured. This time corresponds to Ω, so to a
frequency of 3.5 MHz. Dividing ∆τS by Ω we can obtain a coefficient C1. The second step
is determine a second coefficient measuring the time ∆τV corresponding to a given voltage
difference on the PDH signal ∆V ; their ratio is named C2 = ∆V/∆τV . Multiplying C1 and
C2 each other and renormalizing we obtain kdiscriminator = 5.05 ·10−6V/Hz = 5.05V/MHz,
thus a variation in frequency of 1 kHz corresponds to a variation of 5.05mV of the PDH
signal. the function D(f) is then the transfer function of the low-pass filter at the output of
the Discriminator, multiplied for kdiscriminator (D(f) is plotted in Figure 5.4). It is important
to note that the phase of D(f) is completely determined by the low-pass filter and due to the
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Figure 5.3 PDH signal zoom on the linear region. Below the error signal there is the
corresponding transmission peak.

high cut frequency, it is substantially null in the spectral region of interest for our system
stabilization (up to few tens of kHz).

5.1.2 Servo

The output signal of the Discriminator is sent to the Servo, that manipulates it and gives
to the Actuator a signal adequate to reduce the frequency detuning between Source and
Reference. In our case it consists of a PID circuit (Proportional-Integrative-Derivative2)
made in our laboratory and shown in Figure 5.5. The PID electric schematics is represented
in Figure 5.6. The PDH error signal firstly enters into the offset stage. Here the signal
offset can be changed by the add of a DC voltage, in order to center the PDH signal on the
cavity transmission peak. Without this stage a wrong error signal could lead the cavity not to
stabilize on the resonance frequency but only near it. the offset stage introduces an almost
unitary gain ko f f set = 0.988402. We measured this value comparing sinusoidal input signals
read at the Offset Monitor output and averaging the experimental data obtained at different
frequencies (10 Hz, 100 Hz, 1 kHz and 10 kHz). Thus the offset transfer function is a real

2Despite the name, the derivative part is not implemented in our apparatus.
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Figure 5.4 Discriminator transfer function D(f).
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constant simply given by:

Go f f set ( f ) = ko f f set = 0.988402 (5.1)

The signal leaving the offsetstage goes to the proportional and the integrator stages. The
proportional consists of a non-inverting operational amplifier with a voltage divider and an
high-pass filter on its input. The proportional tranfer function is:

Gproportional ( f ) = Gtension−divider ( f )GHPF ( f )Gnon−inv ( f ) (5.2)

=

(
R22

R21

)
2π f R5C1

1+ i2π f R5C1

(
1+

R7

R6

)
1

1+ i2π f T
(5.3)

where the operational amplifier gain-bandwidth product GBW has been considered and

T = [2π fC]
−1 is the time associated to the OP-Amp cut frequency fC = GBW

[
1+ R7

R6

]−1
.

Note that R6 is variable and it can be used to change proportional gain. The proportional can
be switched on and off. The signal is also sent to the integrator stage, which is an inverting
integrator circuit with transfer function given by:

Gintegrator ( f ) =− 1
i2π f R8C2

(5.4)

As in the case of R6, R8 is variable and it allows us to modify the integrator gain function3.
The integrator can be switched on and off as the proportional, but without it we are not able
to stabilize the cavity-laser system. Then, during the stabilization process, the integrator is
switched on and mantained active. The PID is also composed by a reference, which generates
an adjustable DC voltage directly sent to the piezoelectric actuator and used to search the
resonance lenght. Then we have a summer circuit which takes as input the signals from the
previous stages and summing them together. The tranfer function of the summer can be
considered unity for the inverting input. After the summer there is a unitary gain amplifier,
that is fundamental to drive the Actuator, because the previous stages cannot provide the
needed electric current, which excedes the used Op Amps parameters (Analog Devices
OP07). This last stage is composed of a simple buffer with infinite input impedance that
allows to uncouple the previous part from the Actuator, avoiding signal degradation, and
of an unity gain circuit with high output current operational amplifier (Texas Instruments
-LM675). It is fundamental to notice that if on the one hand the mechanical features of the
piezoelectric belong to the Actuator response, on the other hand its electrical properties have
to be considered as a part of the Servo. Indeed, because of its capacity Cpiezo = 1.431 µF

3In next Sections we will refer to R6 simply as Rprop and to R8 simply as Rint
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and the presence of two resistances at the end of the unitary gain circuit R18 = R19 = 1Ω,
the piezoelectric crystal behaves as a low-pass filter which transfer function that must be
considered in Servo transfer function calculation.

Gpiezo ( f ) =− 1
1+ i2π f (R18 +R19)Cpiezo

(5.5)

In order to avoid the satisfation of Barkhausen criterion for the global feedback loop, a
single-pole low-pass filter has been inserted in the PID circuit. Its adjustable resistance R f il

make us capable of avoiding self-oscillations of the system choosing the right cut frequency.
The low-pass filter complex transfer function is given by:

G f il ( f ) =− 1
1+ i2π f R f ilC f il

(5.6)

From voltage to voltage: H(f)

The servo transfer function is obtained multipying all the transfer functions we treated
above. It is worth noting that the Servo response to a signal is completely different when
the proportional is switched on or off. We can then distinguish two different Servo transfer
functions for the two cases. When the proportional is switched off we have

HpropOFF ( f ) = Go f f set ( f ) Gint ( f ) Gpiezo ( f ) G f il ( f ) (5.7)

while H(f) becomes

HpropON ( f ) = Go f f set ( f ) [Gintl ( f )+Gprop ( f )]Gpiezo ( f ) G f il ( f ) (5.8)

when the proportional is switched on. In Figure 5.7 are shown two examples of transfer
function of the Servo, one with proportional switched on and one without it. We can note
that at low frequencies the behavior is the same for the two cases because the integrator is
dominant. In this region we can also observe that the phase is near 90 degrees. When the
proportional is switched off the phase raises due to the low-pass filter and the amplitude
simply decreases. If the proportional is present, the phase goes to low values before raise
because of the proportional contribution that becomes dominant from frequencies about
103 Hz until 105 Hz, so where the filter contribution is no more negligible4. When the filter
contribution become important around 105 Hz the gain amplitude decrease to zero also if the
proportional is switched on.

4in the case represented in Figure 5.7 the low-pass filter cut frequency is f f il = 1.592 ·107 Hz
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Figure 5.7 Two examples of H(f) (continuous lines are amplitudes, while dashed lines are
phases). HpropOFF is plotted in purple and it is the transfer function when Rint = 3kΩ and
R f il = 1Ω. HpropON is drawn in red and in this case Rprop = 1kΩ.
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Actuator

Figure 5.8 Picture of mirror D mount, micrometric slide and piezoelectric crystal. The red
arrow indicates the Actuator, visible in the center of the mirror.

5.1.3 Actuator

The Actuator consist of the piezoelectric fixed on the mirror D mount. As we have
seen in the theoretical chapter, when a voltage is applied to the piezo, it changes its lenght
shifting the mirror D position following the signal elaborated by the Servo or probe triangular
signals. In Figure 5.8 is shown mirror D mount and the Actuator behind the mirror, which
is transparent in the visible region. subsubsectionFrom voltage to frequency: A(f) As for
D(F), the Actuator transfer function calculation is divided in two steps: the first one is to
measure the piezo spectral response, the second one is to calculate the voltage-to-frequency
conversion coefficient kact . A( f ) is obtained multiplying the spectral response by kact .

Piezo spectral response has been measured by using a Michelson Interferometer and
exploiting a narrow-linewidth infrared Nd:YAG laser as we have schematized in Figure 5.9.
In particular we used a Mephisto 1500NE, which is characterized by a spectral linewitdth
of few kHz and consequently by a very large coherence time. The Mephisto light goes on a
beam splitter that divides the light into two components, where the first goes ahead and it is
reflected by a metallic mirror, while the second component is sent to the mirror C. The beam
then recomposes, generating the interference, and incides on the photodetector. Firstly, the
probe traingular wave has been sent to the Actuator, making interference fringes visible on
the oscilloscope, as shown in Figure 5.10. Then, choosing the middle of a fringe as working
point, a few millivolts sine wave is sent to the piezo instead of the triangular signal. In this
situation the photodetector can relevate the same sine wavefunction, but with amplitude and
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Figure 5.9 The Michelson Interferometer scheme.
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Figure 5.11 The Actuator transfer function A(f).

phase depending on the piezoelectric crystal spectral response. The different amplitudes have
been re-normalized choosing as reference the lowest setted frequency value. The so collected
data have been successively interpolate to generate a continuous function P(f).

The second step is the measure of kact coefficient. To determine how many volts correspon
to a certain frequency interval, we can do a frequency scansion sending to the actuator a
traingular wave as during the alignement process. In this case, we have to choosen a Free
Spectral Range (=100 MHz) as frequency reference. The voltage difference correspondent
to a FSR is 7.09V . Since kact =

∆ν

∆V , we have kact = 14.1MHz
V . The last passage consists of

multiply the response curve by the convertion coefficient, obtaining the Actuator complex
transfer function:

A( f ) = kact ·P( f ) . (5.9)

The result is exposed in Figure 5.11. We can immidiately note that the piezoelectric has a
resonance peak at 14 kHz, associated to a fast increment of the phase, and many humps and
smal peaks near the most important one. The presence of more than one peak suggests us that
the Actuator could be composed of many harmonic oscillator linked together. The Actuator
play a role of great importance on the feedback control bandwidth, since if the phase slope is
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high and the the global gain decreases near the unit, the Barkhausen criterion can be satisfied
leading to problems in stabilization.

5.2 Stabilization procedure

The feedback global gain function is defined as the product of all the three transfer
functions recaved in the previous Sections:

G( f ) = D( f ) H ( f ) A( f ) (5.10)

As already exposed in Section 3.2, the noise PSD suppression is not given by only G(f), but
by a factor 1

|1+G( f )|2
, where the phase of G(f) can play a fundamental role when G( f )≈ 1.

An example of the global gain function G(f) is displayed in Figure 5.12. We can observe a
strongly decreasing behavior at low frequencies, which is due to the integrator contribute.
When the proportional gain becomes important compared to the integrator, G(f) becomes
more flat. The low-pass filter and Actuator transfer functions contributions are evident
where there are peaks and smooth humps on the function. It is particulary noticeable the
Actuator resonance frequency peak around 14 kHz. The Discriminator tranfer function acts
substantially as a multiplicative constant in the studied frequency region, because of the high
cut frequency of the 6-th order Butterworth filter ( fc = 100kHz)5. Our feedback system
allows us to lock the cavity to the external laser reference and an accurate choice of the PID
components gain can lead to noise suppression which is fundamental in order to maintain
the system stabilized. We stabilized the cavity for a curved mirrors distance of 763 mm. The
main steps of the system stabilization procedure can be resumed as:

• Set to zero the PID offset and find the resonance condition exploiting the PID reference;

• Switch the integrator on. In this initial phase the integrator gain must be low in order
to permit fine reulations on th offset (Rint ≈ 3/4kΩ);

• Make the integrator gain increase (until to Rint ≈ 0.65kΩ). At this point self-oscillation
can occur, but can be reduced reducing the low-pass filter cut frequency.

• Switch the proportional on. A low resistance value (Rprop ≈ 40Ω) is enough to
eliminate most of self-oscillation noise and external noise in the kHz range6.

5In theoretical simulations the value kdiscr has been approximated to 3, in order to better fit the experimental
evidences.

6Higher values of proportional gain can be choosen, but this lead to stronger self-oscillations that require an
additional contribution of the low-pass filter, that can excessively reduce the control bandwidth
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Figure 5.12 Example of G(f) where Rint = 1kΩ, Rprop = 10Ω R f il = 500Ω. The amplitude is
drawn in blue, while the phase is the orange dashed line.
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Figure 5.13 Power Spectral density acquired from the Offset Monitor. Low-Frequency noise
is strongly reduced by the integrator.

Measurements of the noise suppression has been performed calculating the Power Spectral
Density S(f) of the PDH error signal, measured from the Offset Monitor. The PSD has been
calculated from the oscilloscope data following the method exposed in Subsection 4.2.2 and
using the inverse of kdiscriminator as voltage-to-frequency coefficient.

Before exposing the stabilization experimental results, it is important to focus on the role
of the different PID components in the stabilization.

Integrator’s role

Integrator circuit allow us to suppress noise at low frequencies until some hundreds of
Hz. In order to demonstrate this fact, we studied the noise peaks height at low frequencies
of S(f), locking the cavity to the laser using only the integrator, without the proportional.
The peaks amplitude decreases for decreasing integrator resistance, hence for integrator gain
growth. In Figure 5.13 are shown the spectra we obtained for different integrator gains (in
logarthmic scale). Note that noise level is lower in high and medium gain for the most of
frequencies considered. In particular, we started in a low-gain condition where Rint = 4kΩ

and then we increased integrator gain choosing Rint = 2.5kΩ and Rint = 1kΩ. We also
quantified the noise reduction calculating the total noise σ . For low-gain integrator we
obtained σlow = 8065Hz, for medium-gain integrator we have σmedium = 4926Hz, while for
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Figure 5.14 Theoretical global gain function. Both amplitude and phase are drawn in the
figure. Higher gain values corresponds to higher suppression factors as demonstrated in
Equation 3.9

high integrator gain σhigh = 3419Hz. The experimental result can be explained looking at the
theoretical G(f) calculated using the transfer functions above exposed and plotted in Figure
5.14.

Proportional’s role

Since the integrator gain function is a decreasing function, at a certain frequency it
becomes too little to adequately compesate the noise. For frequencies around a kHz the
proportional circuit gains importance and dominates over the integrator. We have proved
this fact experimentally, measuring the reduction in height of artificial noise peaks. Such
artificial peaks have been generated using a vibrating piezoelectric crystal fixed on the optical
table. We observed a reduction of the noise intensity at a frequency of 800 Hz, but we did
not observe reductions at 300 Hz, where the proportional has a secondary role compared
to the integrator. Experimental spectra can be seen in Figure 5.15 (in linear scale). In
the 300 Hz case, we mantained the integrator resistance Rint = 1.15kΩ, while we set the
proportional resistance value to RpropLOW = 500Ω and RpropHIGH = 7kΩ. In the case of
800 Hz artificial noise peak, we set Rint = 2kΩ and we variate the proportional resistance
from RpropLOW = 10Ω to RpropHIGH = 11.25kΩ.
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Figure 5.15 Power spectral densities measured for different proportional gain and piezo
oscillation frequency.
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Figure 5.16 Theoretical global gain function calculated for different proportional configura-
tions. Note that phases changes as well amplitudes changes.

We also calculated the suppression factor 1
|1+G( f )|2

for whole cases and the ratios propor-
tional off to high proportional and low proportional to high proportional with the aim of
compare such calculated values with the lowering of 800 Hz artificial peaks. The results∣∣1+GpropOFF

∣∣2∣∣1+GpropHIGH
∣∣2 = 7.2

SpeakOFF

SpeakHIGH
= 6.9∣∣1+GpropLOW

∣∣2∣∣1+GpropHIGH
∣∣2 = 4.7

SpeakLOW

SpeakHIGH
= 5.3

proof a good agreement between the theoretical model and the experimental data for what
concernes the proportional circuit behavior in the feedback system.

Experimental results

We stabilized the optical cavity in four steps, measuring the Power Spectral Density and
calculating the global Gain function for each stage. In all measurements is present a probe
artificial noise at 2.5 kHz. Firstly we used only the integrator with a high variable resistance
value equal to 3kΩ and we labeled this configuration A. In this condition the feedback gain
is not enough to compensate the noise and low frequency noise can easily lead to the loss
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of stabilization or to generate strong losses peaks on the transmitted power and then on
the inside-cavity radiation power. PSD and the gain function of configuration A are shown
in Figures 5.17a and 5.17b. In order to reduce the low-frequency noise, we increased the
integrator gain setting the resistance to 0.65kΩ (configuration A*). High gain integrator
help to reduce low frequency noise, but can spark off self-oscillations. The reason can be
explained looking at Figure 5.18: at 1.1 kHz the gain amplitude is about unitary, while the
phase is about 180 degrees, and in this situation Barkhausen criterion is satisfied. In case A*
experimental spectrum is not aviable because strong oscillations saturate the Offset Monitor
and data acquisition becomes unreliable. To avoid self-oscillations, the low-pass filter can
be inserted with a resistance value R f il = 6kΩ and a cut frequency fc ≈ 2.7kHz (feedback
configuration B). The filter shifts G ≈ 1 to lower frequencies and move the π phase away
from it. Nevertheless, self-oscillations reduce but are not removed at all, as can be noted in
Figures 5.19a and 5.19b. To suppress the noise peak growth around 3 kHz, the proportional is
switched on. The use of proportional circuit allows us to improve the gain bandidth reduced
by the filter and to suppress self-oscillations. Low gain proportional, Rprop = 40Ω is enough
for our purposes. The so obtained spectrum is exposed in Figures 5.20a and 5.20b. The
achieved result can be explained by the global gain plot: the proportional raises the gain
amplitude and shifts the dangerous 180 degrees phase of more than 4 kHz.

The noise σ has been also calculated in order to quantify the goodness of the stabilization
procedure. In particular, we obtained σA = 6251Hz for configuration A, which is reduced
to σB = 2934Hz in configuration B. The best stability result is reached by configuration
C, where we have σC = 2235Hz. Empirically the stabilization result is evident on the
transmission signal detected by the photodetector positioned after the second mirror of the
cavity: comparing the transmitted signal in configuration A in Figure 5.21 and in configuration
C in Figure 5.22 we can note a more flat profile and an higher mean value.

5.3 Noise of stabilized cavity-laser system

After performing the active stabilization of the cavity, we measured the noise on the trans-
mitted beam, calculating the Power Spectral Density of the signal sent on the photodetector.
It is worth noting that measuring the transmitted radiation signal we have both intensity and
frequency noise contribution associated to cavity-laser detuning and laser power fluctuations
(Subection 4.2.2). It is also important to highlight that the cavity bandwidth is about 200 kHz
and the photdetector cut frequency is about 900 kHz. We acquired experimental spectra
stabilizing the cavity using feedback configuration C that guarantees the best stabilization
performances. The result is shown in Figure 5.23. We also calculated the noise σ as an
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Figure 5.17 (a): Spectrum in configuration A. We can observe a very high noise level at
low-frequencies and a general decreasing behavior. The probe peak is well visible at 2.5 kHz.
Low integrator gain does not allow a good stabilization, since does not well compensate
fluctuations and disturbances. (b): G(f) in configuration A. We can note that the Gain is high
only at frequency lower than 2 kHz, while in other regions the noise is not suppressed, since
the gain is too low. Moreover, we can observe that 180◦ phase is very far from G( f ) = 1.
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Figure 5.18 G(f) in configuration A*. In this configuration PSD is not measurable because
the high self oscillation peak saturates the PDH error signal. From this graph we can easily
understand why there are self-oscillations at a frequency approximately 11 kHz: here the
Gain i approximately one and the phase is very close to 180◦, then the system satisfies the
Barkhausen criterion. By the way, we expect a better noise suppression at low frequency due
to an higher integrator gain respect to configuration A.
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Figure 5.19 (a): Spectrum in configuration B. The presence of the low-pass filter reduces
self-oscillations, but does not delete them at all. We can observe here that there is a big
contribution to noise at frequencies about 4000 Hz due to self oscillations. We can also note
that the low-frequency noise has been reduced of a factor 10 respect to configuration A,
thanks to the higher integrator gain. (b): G(f) in configuration B. Low-pass filter increases
gain amplitude slope, reducing the control bandwidth. Furthermore, although the phase is
not exactly 180◦ when the amplitude is equal to one, it is enough close to it in order to trigger
self-oscillations. Self-oscillation frequency is lower than in case A* because G(f) becames
unitary near 4 kHz.
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Figure 5.20 (a): Spectrum in configuration C. All self-oscillation peaks have been deleted
inserting the proportional that guarantees an higher gain at frequencies higher than the kHz.
In this configuration we reach the best results because we strongly suppress low-frequency
noise with the integrator, we mantain an high gain up to some kHz thanks to the proportional
and avoid self-oscillations exploiting the low-pass filter. (b): G(f) in configuration C. We can
immediately see that this configuration is quite far from the Barkhausen criterion conditions,
then we have no self oscillations. On the other hand, the use of proportional and integrator
circuits at the same time allows a good stability since the main noise contribution are in
spectral region corresponding to high gain amplitude.
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Figure 5.21 Transmitted signal in configuration A. The trace is noisy and many losses peaks
are present.
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Figure 5.22 Transmitted signal in configuration C. Here the better situation obtained is
presented. Noise is very low and the transmission trace is flat and without power downfalls.
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Figure 5.23 Power Spectral Density of the transmitted signal measured outside cavity mirror
B while optical stabilization was active.

integral function of frequency, which is compared to the PSD in Figure 5.24. It is important
to note that in these graphics the low-frequency noise peaks are not visible: this fact is due
to the low resolution of the oscilloscope when wide range measures are performed. We
can immediately note the same spikes of laser intensity noise, which directly influences
the transmitted beam noise, while the signal goes to the background for high frequencies.
We also calculated the σ of the transmitted beam considering the frequency range from
0 Hz to 2 MHz and so obtaining σtran = 0.21mV. For a transmission peak about 115 mV
we have a relative noise δV = σ

115mV = 0.18%. The same percentage can be referred to the
power inside the cavity, since it is directly proportional to the measured transmitted voltage
(P = V

ηR ).
Evaluate noise over the transmitted signal is a key-point in order to make previsions on

the next stages of MariX R&D. As an example, if we increase the cavity Finesse, can we
already reach a good stability? To answer this questions, we calculated the power relative
fluctuation assuming a Finesse of 5000. To do this, we converted σtran in Hz, supposing
a Gaussian shape for the transmission peak of our cavity, so in in the case of F ≈ 500. In
Gaussian approximation we can write the transmission peak as a function of frequency
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Figure 5.24 σ and Power Spectral Density as functions of frequency are here shown. We can
easily note that the most of noise contributions are at low-frequency. In this plot we are not
able to distinguish low-frequency peaks in power spectral density because of oscilloscope
resolution. Also in σ plot we observe a linear behavior that we expect to became different at
higher resolutions, thanks to the contribution of every single noise spike. Noise integral over
0 Hz-2 MHz frequency range gives relative power fluctuation about 0.18%.
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detuning between cavty and laser:

G500 (δν) = 115mV · e
− δν2

2∆2
500 (5.11)

Where ∆500 =
HWHM

1.177 = 8.496 ·104Hz, obtained starting from HWHM = 1
2

FSR
F ≈ 100kHz.

Folowing the Gaussian profile, we find that σ500 ≈ 5400Hz when the voltage has been
lowered by a factor σtran subtracted to the maximum. If we now suppose to increase cavity
Finesse up to 5000, we can calculate its transmission peak applying the same method we
used above. Then the Gaussian function G5000 can be calculated from ∆5000 =

∆500
10 instead

of ∆500:

G5000 (δν) = 115mV · e
− δν2

2∆2
5000 (5.12)

We can exploit this Gaussian we can calculate the voltage fluctuation associated to a fre-
quency noise of 6 kHz that we measured for our cavity. The result is σ500 = 5.3mV, which
corresponds to a relative noise δV5000 = 19% on the average transmitted power. Since most
of noise is found at frequencies between 0 Hz and 10 kHz (about 4/5 of the total), it is clear
that it is fundamental reduce low-frequency noise in future. Indeed, if we suppose to remove
all the low frequency noise, the relative power fluctuation reduces to δṼ5000 = 2%, then it
could be possible to stabilize a cavity with finesse ten times higher than the currently used
mantaining the power over the 98% of its maximum.

5.4 Low frequency noise measurements

As can be realized from the considerations at the end of the previous section, low-
frequency noise plays an important role in our system stabilization. Such noise is essentialy
due to mechanical vibrations of the components of the cavity, like mirror mounts and
micrometric slides. Since the cavity studied in this work is the first realized for the MariX
project, we used standard optical components unfortunately sentive to mechanical vibrations.
An important step for the cavity improvement during the R&D program is then individuate
the most problematic elements with the objective of substitute them with more performant
components. With such aim, we have studied the low-frequency noise from PDH signal, in
a range between 0 Hz and 1 kHz. The low-frequency spectrum is presented in Figure 5.25.
Three main peaks can be easily distinguished at 225 Hz, 410 Hz and 485 Hz. Lower peaks
are also present at frequencies equal to 65 Hz, 365 Hz, 365 Hz and 450 Hz. We measured the
resonance spectrum of all optical mounts from the Menlo source to the last mirror of the



96 Feedback system and noise suppression

0 100 200 300 400 500 600 700 800 900 1000

Frequency [Hz]

0

1

2

3

4

5

6

7

8

9

10

S
(

) 
[H

z2
/H

z]

104 Low Frequency Noise

485Hz

410Hz
225Hz

Figure 5.25 Low-frequency noise spectrum. The three main peaks are highlighted by red
arrows.

optical cavity, exploiting an angular fluctuation measurator7. In practice, we delicately knock
on the mounts and we acquired the FFT of the so caused horizontal angular fluctuation. Then
the mounts Fourier spectrums have been compared with the error signal spectrum in Figure
5.25, looking for similar resonance peaks. Note that we simply used the FFT and not a PSD
because we are not interested in peak height, but in their spectral position only. Recalling
that in such spectrums the peak position in frequency is important, while their height is not,
since it is correlated to many factors like the point in which the mount has been hit to make it
vibrate or the direction of the bump; the 485 Hz noise peak can be attributable to the mount
of cavity mirror B, the 410 Hz is due to the mount of cavity mirror D, while the 225 Hz noise
peak is probably due to the mount of cavity mirror C. The measured Fourirer transform of
these components is shown in Figures 5.26a, 5.26b, and 5.26c respectively. It is then clear
that the most important noise sources are components of the Fabry-Perot cavity. As next step
in cavity stabilization is to increase its mechanical stability replacing both mirror and slides
with high stability components.

7Details about the angular fluctuation measurator are not available, since Dott. Cialdi et al. hold the patent
for this device.
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Chapter 6

Conclusions

In this thesis work we have realized a bow-tie Fabry Perot optical resonator and we have
actively stabilized it against an external mode-locking laser source, via Pound-Drever-Hall
technique.

In order to reach our goal, we characterized the whole experimental setup, then the laser
source, the optical cavity and the feedback-system. In particular, we studied spatial, temporal
and spectral properties of the laser we used and also its intensity noise. For what concernes
the optical cavity, we coupled it with the laser beam and we characterized its main features
like the Finesse, the spot size and waist dimension in focus as a function of the curved
mirror distance and the cavity modal structure. Then, we characterized all the feedback
system components transfer functions. Furthermore, we developed a stabilization procedure
to stabilize the cavity against the laser. With the aim of quantifying the experimental results
we measured the Power Spectral Density of the PDH error signal and we calculated a Gain
function able to explain the experimentally observed feedback behavior. We observed that
integrator and proportional circuits in the PID are complementary and both necessary to have
a good stabilization and noise suppression both at low frequency and in the kHz spectral
region. Then we found that the best results are achieved by the choice of a high integrator
gain, relatively low proportional gain in addition to a contribution give by the Servo low-pass
filter. Such configuration is the best compromise between high gain (then strong noise
suppression) and the prevention of self-oscillatory phenomena. Our stabilization method
permits a stabilization with power fluctuations only on the order of 0.2% on the transmitted
signal outgoing the cavity, then on the power inside the cavity.

Looking at the next steps of MariX R&D program, we also performed predictions on
the stability of an analogue cavity with ten-times higher Finesse than the current one, since
the final objective of MariX and BriXs demonstrator is to use an high-Finesse resonator.
Because the main noise sources are mechanical vibrations that causes disturbance at low-
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frequency, we have individuated the mounts responsable of the main noise peaks using a
angular fluctuation measurator, in order to substitute them in future and so to increase system
stability.

In conclusion, this work has allowed us to substantially solve the stability problem for
MariX-BriXs optical cavity and to precisely individuate the strategies we need to apply
in order to solve the current experimental problems, like improving mechanical stability.
Meanwhile, the amplification system implementation began and we started studying a new
method to solve the problems due to mode-mixing phenomena [10], that now represent the
most important challenge in MariX cavity development.



Bibliography

[1] L. Serafini et al. Marix conceptual design report, 2018.

[2] W. Thomlinson et al. K-edge subtraction synchrotron X-ray imaging in bio-medical
research. Physica Medica 49, 2018.

[3] Advanced Photon Source APS 2016 science report, 2018.

[4] Eric D. Black. An introduction to Pound–Drever–Hall laser frequency stabilization.
American Journal of Physics, 69(1):79–87, 2001.

[5] J. L. Hall. Stabilizing Lasers for Applications in Quantum Optics. 1986.

[6] Frieder Lindenfelser. Laser stabilisation for quantum information experiments with
trapp edions. Master thesis, Institut for Quantum Electronics ETH Zürich, 2011.

[7] Evan Hall. Laser Frequency and Intensity Stabilization for Advanced LIGO. pages 1–4,
2016.

[8] Donna Strickland and Gerard Mourou. Compression of amplified chirped optical pulses.
Optics Communications, 55(6):447 – 449, 1985.

[9] H. Carstens et al. Megawatt-scale average-power ultrashort pulses in an enhancement
cavity. Opt. Lett., 39(9):2595–2598, May 2014.

[10] Julia Benedikter, Thomas Hümmer, Matthias Mader, Benedikt Schlederer, Jakob Re-
ichel, Theodor W. Hänsch, and David Hunger. Transverse-mode coupling and diffrac-
tion loss in tunable fabry-perot microcavities. New Journal of Physics, 2015.

[11] P. Favier et al. The compact x-ray source thomx, 2017.

[12] Gianluca Galzerano. Oscillators: frequency stability and noise analysis. In Oscillators:
frequency stability and noise analysis, Trieste, 2016.

[13] Rüdiger Paschotta. Encyclopedia of Laser Physics and Technology. John Wiley & Sons,
2008.

[14] Orazio Svelto. Principles of lasers. Springer US, 2010.

[15] B. Carter. Op Amps for Everyone. Elsevier Science, 2009.

[16] P.R. Gray and R.G. Meyer. Circuiti integrati analogici. McGraw-Hill, 2nd edition,
1987.



102 Bibliography

[17] Hans-A. Bachor and Timothy C. Ralph. A Guide to Experiments in Quantum Optics.
Wiley-VCH, 2nd edition, 2004.

[18] Trager. Springer Handbook of Lasers and Optics. Springer, 2012.

[19] L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen. Ultrashort-pulse fiber
ring lasers. Applied Physics B, 65(2):277–294, Aug 1997.

[20] Paul Horowitz and Hill Winfield. The Art of Electronics. Cambridge University Press,
2nd edition, 1989.

[21] Warwick Paul Bowen. Experiments towards a Quantum Information Network with
Squeezed Light and Entanglement. PhD thesis, 2003.

[22] Dana Z. Anderson. Alignment of resonant optical cavities. Appl. Opt., 23(17):2944–
2949, Sep 1984.

[23] Hiroshi Sakai, Yousuke Honda, Noboru Sasao, Sakae Araki, Yasuo Higashi, Toshiyuki
Okugi, Takashi Taniguchi, Junji Urakawa, and Mikio Takano. Performance studies of a
laser wire beam profile monitor. Japanese Journal of Applied Physics, 41(11R):6398,
2002.



Ringraziamenti

Il termine di questo lavoro rappresenta anche la fine di un lungo percorso, per il quale
sono diversi i grazie da scrivere.

Vorrei come prima cosa ringraziare il mio professore Simone, per avermi guidato per
tutto il periodo della tesi e per avermi insegnato moltissimo. Grazie anche a Gianluca, per
avermi ospitato nel suo laboratorio presso il Politecnico di Milano. Grazie ai miei compagni
di laboratorio Edoardo, Dario e Sanae, per il clima bellissimo in cui abbiamo lavorato.

Voglio poi ringraziare i miei genitori, Elisa e i nonni, che hanno sempre e costantemente
fatto il tifo per me e mi hanno sostenuto in modo incredibile. Grazie anche a Federica, per la
sua presenza preziosa. Infine, grazie ai compagni di questi anni Davide, Luca e Gabriele: è
stato un semplicemente un piacere.


	Contents
	1 Introduction
	2 Introduction to the MariX project
	2.1 The MariX project
	2.1.1 General overview
	2.1.2 MariX Photonic Machine


	3 Theoretical concepts: active optical stabilization
	3.1 Power Spectral Density and noise
	3.2 General scheme of the feedback
	3.2.1 Barkhausen stability criterion
	3.2.2 Pound-Drever-Hall technique

	3.3 Source: optical cavities
	3.4 Reference: mode locking laser
	3.5 Discriminator and Servo: electronic concepts
	3.5.1 Signal filtering
	3.5.2 Circuits with operational amplifiers

	3.6 Actuator: harmonic oscillator model

	4 Experimental setup
	4.1 Global layout
	4.2 Laser source
	4.2.1 Spectral and temporal properties
	4.2.2 Laser intensity noise
	4.2.3 Laser beam features

	4.3 Optical cavity
	4.3.1 Cavity modes
	4.3.2 Cavity alignment and mode-matching procedure
	4.3.3 Cavity Finesse
	4.3.4 Spot and Waist dimension


	5 Feedback system and noise suppression
	5.1 Feedback characterization
	5.1.1 Discriminator
	5.1.2 Servo
	5.1.3 Actuator

	5.2 Stabilization procedure
	5.3 Noise of stabilized cavity-laser system
	5.4 Low frequency noise measurements

	6 Conclusions
	Bibliography

